The creative paradox

There is, in architecture, a certain creative paradox. Most architecture is made by individuals, and the more significant the architecture, the more it is valued as the product of a unique individual creativity. Yet with the passage of time, even the most innovative architecture comes to be seen also as a product of the time and society within which it was created. This does not lead to a lower valuation of individual architects, but it does add to the appreciation of architecture a sense of the social and intellectual milieu in which the architecture was brought into existence, which may not have been clear at the time of its creation. Such effects are not confined to style and appearance, where they are most obvious. Many writers, most notably the late Robin Evans, 1 Mark Girouard 2 and more recently Tom Markus, 3 have noted similar effects for space organisation.

It might be said that this retrospective shift in perception arises simply because architecture is a 'social art', and that it is only with the social distance brought about by time that what was always present can be seen clearly. But this is to restate rather than resolve the puzzle. Architecture is a social art in two senses: in the narrow sense that buildings have social purposes, and in the broader sense that built environments seem to reflect society. At the time of its creation, it is usually clear that a work of architecture is a social art in the first sense, but not always in the second. We see easily that a building is an expression of social purposes, but not how the forms of this expression are in some sense a product of time and place. It is only with the passage of time that the second effect seems to emerge with any clarity.

The puzzle is that the individual act of architectural creation seems able not only to express the social purposes of a building but also to carry within it messages from the society in which it was created which only become clear with the passage of time. How, then, we may ask, does society get into the head of the designer during the process of creative design, and come out in the form of the building? We have, of course, seen how this can happen in the vernacular. Consistency of cultural and social expression is maintained through vernacular buildings, in spite of the great variation between individual cases, because the process of making the building is guided by configurational ideas to think with. These govern the ways in which forms and spaces are assembled into a whole, and it is this that conserves some level of configurational affinity from one building to the next. But architecture is, at the very least, the taking into conscious and reflective thought of exactly those configurational aspects of space and form by which cultures reproduce themselves through buildings. How can architecture be at once an individual expression and an expression of society, if the essence of architecture lies in transcending the conventions that tie buildings into the idiosyncrasies of particular cultures?

Intentions and realities

This question has been posed in an extreme form by events in the twentieth century. From about mid-century, massive changes were brought about in cities in the name of architecture. Vast swathes of what had previously been plausible
urbanity were excised and rebuilt as residential zones which were, in comparison to the urban tradition they replaced, as strange as Teotihuacan. In most languages, these areas have a special name – in English it is ‘estates’ – to distinguish them from the rest of the urban fabric. These linguistic distinctions express fundamental differences in spatial form. Continuity with context is in general sharply broken, if not by barriers then at least by changes in formal and spatial arrangement. The effect is that no one goes into these areas unless they have to. They become, in Alison Ravetz’s accurate term, ‘reservations’.4

Within the areas, differences are even more pronounced. Public space is no longer constructed in smoothly changing yet readable patterns by the careful alignment and orientation of buildings. Instead, at the small scale, there are endless courts, plazas, greens and walkways, apparently intended to create an intimate sense of locale through the zealous pursuit of neighbourliness, but seeming to have the effect at the aggregate level of contributing to a general sense of fragmentation in space. At the larger scale these fragments are linked into abstract patterns in which space seems the accidental by-product of a geometric order beyond the reach of experience, graspable in the plan, but not at the experiential scale of architectural reality.

These are the forms of ‘pathological’ space which were examined in detail in Chapter 5. As we saw, the spatial nature of social experience was decisively altered by these architectural interventions. Within the areas created the inhabitants (whose experience could, because of their structural isolation, never be shared by those outside), witnessed the destruction of the everyday normalities of urban life and their replacement by a caricature urban lifestyle in which fear and alienation in empty spaces became as normal as the decent anonymities of the populated spaces of urbanity had been previously.

These outcomes were never of course intentional. In fact the intentions were exactly the contrary: to use new forms of space to create new forms of community. These intentions mutated with time, first taking the form of futuristic visions, then of a more technical enterprise of the invention of community by spatial engineering, then finally of nostalgia for a – probably imaginary – urban past. One after another, all these visions failed, leaving wherever they were attempted the same sense of an urban landscape despoiled of its essential features and replaced by a landscape as puzzling as it was unwelcome. If an architectural intention is a proposal to create a social outcome through a form, there was, at the very least, a monumental mismatch between architectural intentions and lived realities.

However, these intentions were never purely architectural. Belief in the possibility of new forms of communal existence through spatial engineering were shared widely amongst the multiplicity of political and executive agencies that brought about the re-structuring of the urban landscape. The apparent causes, as well as the outcomes, of these architectural changes were profoundly social. It is this that puts our question about the relation of architectural creation to society into sharp focus. Were the changes authentic architectural products, in which case...
The reasoning art

the mismatch of intentions and realities is architectural error? Or was architecture somehow subverted by social forces of which it became for a time a willing agent and advocate? We have the question of how architecture can be at once a creative and social act in its most extreme form. Did society get into architecture and come out in built form? If so, then it is a matter of urgency to know how this can happen, the more so if we are to save our definition of architecture as the taking into conscious thought of the non-discursive, and therefore social, content of building.

To understand that this was indeed possible, we must understand much more than we do about the nature and origins of architectural intentions, and how architects convert these into built realities. That is to say, we must understand how architects do what they do: design. Understanding the process of design has been one of the vexed themes of architectural theory in the second half of the twentieth century. However, questions about design have always been posed in terms of the process of design: how do architects go about their task of designing, and can it be improved to provide a greater likelihood of success? In this chapter we will try to pose the question in an entirely new way: that is, by inquiring into its products: how is it that these products can be – or at least seem to be – at once individual and social? What is the nature of design, that it is at once a creative individual activity and at the same time capable of influence, even subversion, by social forces and values?

Is design reason or intuition?

Interest in design as an activity arose initially in the nineteen sixties, partly through a general interest in the possibility of applying ‘scientific methods’ in the pursuit of social objective in architecture, partly because the possibility of using computers in design seemed to be predicated on a better understanding of how designers worked – but mostly perhaps because the possibility of design fields such as architecture being constituted as formal disciplines seemed to stand or fall on the possibility of a theoretical understanding of the design process.

It would cause little offence to those who have written in this field to suggest that in spite of these efforts the design process today remains largely opaque. As a consequence, enquiries into the nature of design and the polemics to which they give rise are frankly unfashionable, and have been stagnant for some years. For the academically minded, enquiry into the objects of design rightly seems to offer more promise than enquiry into the nature of design. However, if we are to answer the question we have set ourselves, we cannot avoid reopening this enquiry in a limited way and reconsidering at least some of the key issues that past attempts to analyse design have highlighted. We cannot, for example, avoid the principal stumbling block to previous enquiries into design: is the activity of design a process of reasoning, and therefore one which can to some extent be explicated, or is it a purely ‘intuitive’ process, and one which must therefore remain a mystery?

At first sight, the claim that architectural design is ‘intuitive’ is likely to be greeted with some caution. Whatever else it is – and the more so if we follow the definition of architecture set out in the first chapter of this book – architectural design seems to be the imposition on the material world of the ordering activity of the
The reasoning art

human mind. Through architecture, we come to see, in the built world in which we live, patterns of order whose origins lie in human thought. It might then be expected that architects would see design as a process centred on those ordering powers of human minds which we, for want of a less general term, call reason. But if we listen to architects talking about design, they rarely talk about reason. If pressed to describe the mental process of design, they are more likely to invoke intuition.

We might of course take a cynical view and see this preference for the art over the science of architecture as no more than a trick to maintain professional mystique, since art is a mystery and science, by definition, accessible to open enquiry. However, I suspect there is a deeper and more justifiable reason for stressing intuition in design, one which has to do with the nature of design itself as an activity. For purely technical reasons, I believe, what we normally call intuition is unavoidably the motor of the design process. It is not a question of whether we should prefer an intuitive approach to design or a reasoning approach. It is simply that for design to take place at all mental structures must be deployed and used in such a way as to make the use of the term ‘intuition’ hard to avoid in any reasonable account of the process.

This does not mean that reason is not involved in the design process. On the contrary, I will try to show that reason is also intimately involved in design activity. It is the polarisation between intuition and reason that is wrong. Reason is involved in design for much the same reasons as intuition is. Architecture, I will try to show, is the deployment of intuition within a field structured by reason, and in this sense we may call architecture the reasoning art.

At first sight, this may seem a strange idea. Reason and intuition are usually opposed, even seen as incompatible, in our accounts of human thought processes. A typical dictionary definition is ‘immediate apprehension by the mind without reasoning … immediate insight’. Reason, used to describe processes of thought (as opposed to innate faculties), stresses externalisation of the structure of arguments as in to ‘form or try to reach conclusions by connected thought’. The question: is design a matter of intuition or reason? refers to this distinction. How far is design carried out through inchoate, ‘black box’ processes inside the mind which cannot be made explicit? And how far is it carried out by forms of externalised reasoning which in their very nature are, or can at least be made, explicit and therefore open to enquiry?

This question has, for two decades, had practical urgency since it might well prescribe limits to the ways in which we might seek to use computers to support architects in the creative aspects of their work. Unfortunately, efforts to solve this problem have led at best to a wide gap between theory and practice, and at worst to downright paradox. The fact is that as soon as we try to look at it closely the process of design becomes more and more puzzling.

Design as a process

At first sight, the process of design seems straightforward enough. It is usually initiated with a ‘brief’, which describes, summarily or at length, what the building must do. It then passes through a series of stages during which a possible building
The reasoning art

is first sketched and then gradually realised in more precise form, and ends when
the designer hands over a proposal for a building, drawn and explained in such a
way as to show what the building will be like and how it will provide what the brief
asks for, or something better.

This seems simple enough. But if we look a little more closely, matters
are not so clear. The ‘brief’ which initiates the process may be a lengthy formal
specification, or it may be a few spoken words, but whatever form it takes, the
essence of a brief is that it describes not a building but what a building must do,
that is, what functional programme it must satisfy. The brief specifies the functional
programme rather than the building because what the building will be like, visually
and spatially, is the speciality of the architect; the reason we employ one in the first
place. If we know what the building is to be like, as opposed to what it must do,
then we do not seek the help of an architect.

Finding the form that satisfies the functional constraints set out in abstract
form in the brief is then a reasonable way of describing the architect’s useful skill. The
brief initiates the ‘design process’, at the end of which – and often after much trial
and error – the designer hands back to the client a proposal for a building, drawn and
explained in such a way as to show both what the building will be like and how it will
do what the brief asks for. This has led many to believe that to understand the design
process we must show some process of thought by which a formal and spatial
object may be derived from written instructions about function. Initially, this sounds
innocuous enough, but on reflection it raises profound difficulties. By what possible
means could there be a mental process which translates from written instruction to
physical and spatial forms? The two domains are not commensurable. The same
applies to the idea of translating from notions of function to notions of form. The
‘form-function’ relation is, as we have seen, perhaps the least understood problem in
architectural theory. No wonder the design process appears mysterious. It is not at all
clear that there could be an explicit process by which these two translations between
incommensurable domains could be achieved.

However, many who have sought to explain the design process in terms of
what goes on – or should go on – in the mind of the designer have taken this as
the definition of the outline of the design process, and set up the question as one
of explaining by what form of reasoning, or other thought process, designers go
from information about function to a proposal for a physical and spatial object. It is
worth examining this idea closely, since in doing so we will at least expose the full
difficulty of our problem.

Design as a procedure

The most powerful statement of the procedural view of design is probably
still Christopher Alexander’s Notes on the synthesis of form⁹ and it is worth
commenting on, even thirty years after it was written, because although wrong,
and known by its author to be wrong, it is sufficiently rigorous in its conception
and execution to raise in a stark and simple way the profoundest problems in
conceptualising the act of design.
The reasoning art

The argument in the Notes is grounded in one of the fundamental polemics that modernism had introduced to architecture: how far it was satisfactory to regard design as an intuitive process, dominated by imagination and perhaps impeded by reason, and how far could the intuitive process be progressively replaced by a reason-based procedure in which the architect could draw on ever expanding knowledge? The fundamental argument against intuitionism in design was that it was through the unquestioning reliance on intuition that architecture was tied both to imagism – the domination of architecture by the visual rather than by the functional – and to historicism – the domination of architectural creativity by the forms of the past.¹⁰

Alexander’s was the first utterly serious and formal attempt to put this into effect. It was based on seeing the design process, from the abstract statement of function in the brief to the crystallisation of a physical form, as a process of analysis of information followed by synthesis of form. Several models were proposed at the time, but all shared the central notion that a process from abstractly stated function to concrete architectural solutions could and should be a process of the analysis of the problem followed by a synthesis of the solution. Analysis-synthesis seemed the natural scheme of thought by which we could seek to replace an intuition based process with a reason based process.

It would not of course appear so now. With hindsight, it is easy to see that analysis-synthesis is not at all a natural scheme of thought but something more akin to a paradigm of thought, an understanding of which requires a minor excursion into the history of ideas. We tend to think of ‘analysis-synthesis’ as a very twentieth-century idea (we make the same error over ‘architectural determinism’), but it is not. It was first set out clearly in the seventeenth century by the mathematician philosopher René Descartes in his Discourse in Method.¹¹ Descartes’s objective was very similar to that of the twentieth-century design theorists. Descartes wanted to rid the mind of the clutter of preconceptions embodied in natural language, and, starting only from indubitable, simple notions, rework the whole structure of human knowledge. His model was geometry, where we begin from a small number of indubitable (as he thought) postulates and axioms, and use them to create chains of reasoning (theorems, lemmas, proofs, and so on) and eventually large structures of secure knowledge.

Descartes believed that by starting equally simply and working with similar rigour, all fields of knowledge could be rendered as well-structured and secure as Euclidian geometry. Descartes’s metaphor for the restructuring of language was the well-ordered town, laid out on geometrical principles, which he contrasted with the town that had grown up, like the human knowledge embodied in language and habit, by a chance process of accretion.¹² In Descartes, we find all the elements in the modernist philosophy: the desire to get rid of preconceptions, to make a break with the untidy past, and to derive a whole new structure of ideas through analysis of foundations and rigorous development of more complex ideas.
Alexander’s version of this in the Notes was to propose ‘the analytical nature of the programme, and the synthetic nature of its (architectural) realisation’. He summarised this in a pair of related hierarchical diagrams. On the one side is the ‘downward’ hierarchy of the analysis of ‘needs’, in which the broadest statement of ‘need’ is first broken down into its major components, then these are broken down, and this is repeated until the most elementary level of need is reached. The ‘upward’ hierarchy of architectural forms then work the other way, with the most basic level as the foot of the pyramid, then the next level in which these are combined, and repeating this till the whole form is ‘synthesised’.

Alexander offers a worked example of his method: the redesign of a village in India. His procedure was first to list all the ‘misfit variables’ (that is, the things that could potentially be put into the wrong relationship) as ‘needs or requirements that must be satisfied in a properly functioning village’. These include all those ‘explicitly felt by the villagers as needs’, those ‘called for by national and regional economy and social purpose’ and those ‘already satisfied implicitly in the present village (which are required but not felt as needs by anybody)’. Examples of the 141 needs identified were: ‘Harijans regarded as ritually impure, untouchable etc.’, ‘Efficient and rapid distribution of seeds, fertiliser etc. from block HQ’, ‘Simplify the mobility of labor, to and from villages, and to and from fields and industries and houses’, and so on. All the interactions between the needs are then listed, so that we have a graph made up of the ‘needs’ or elements of the graph and the ‘interactions’ or links in the graph.

The graph is then analysed and decomposed into ‘four major subsets’ each made up of between two and four ‘minor subsets’. Minor subsets are groups of interrelated needs, and major subsets are groups of groups. Each ‘minor subset’ is then translated into a ‘constructive diagram’ indicating approximately how the subset of need could be satisfied by a spatial arrangement. These diagrams are then grouped together into more complex ‘constructive diagrams’ representing the ‘major subsets’ of needs, and the four major subsets are then grouped to form a constructive diagram for the whole village. In this way, Alexander claims to have begun with the analysis of needs as a field of information and ended with the synthesis of a design solution, that is, an outline of spatial design for the village as a whole.

Many modern readers will be as repelled by the ethnocentric arrogance of the time as by the bizarreness of the solution proposed. But this is not the point at issue here (though it may well be epistemologically linked to it). The issue here is what Alexander has actually done. Has he actually derived an object, the village, from information, the abstractly stated needs, by means of a formal procedure? If the answer is yes, then he can truly claim to have succeeded in his aim of replacing intuitive design with a systematic procedure.

In fact, there is a devastating flaw in Alexander’s procedure, one which entirely vitiates his aim of replacing intuition with reason, and leads him only to conceal intuition – even prejudice – under a veneer of reason. This is not a single flaw but a pervasive flaw. It vitiates every stage of the argument. The flaw can be stated as follows. What Alexander is opposed to is intuition based design, which, he
argues, leads the designer away from a proper understanding of functional needs and the subsequent synthesis of a solution on the basis of that understanding. In practical terms this means that he is opposed to the idea that to be asked to design a ‘school’, say, immediately activates in the mind a range of given solutions to that design problem, solutions in which the functional patterns of a ‘school’ such as having classes, assemblies, teachers and taught, head and teachers, and so on are already arranged in specific ways according to certain conventional patterns through the ideas of built form which the word ‘school’ immediately brings to mind. Alexander objects, in effect, to the fact that in the ordinary use of language, words like ‘school’ already associate intuitively what the architect seeks to relate analytically and synthetically, that is, the functional and spatial pattern. This immediacy of association between function and form is precisely the means by which past conventions are reproduced. Alexander’s programme therefore depends on doing something different from this.

Does he? Of course not. This is exactly what his procedure cannot do. However much you disaggregate the ‘programme’ analytically, there are no analytic means to move from a programme or functional element to an architectural or spatial element. This can only be done by using pre-existing knowledge or assumptions about how functional ideas translate into spatial ones. In other words, to make the crucial step in the whole procedure, that is, to go from information to object and from function to form, Alexander has recourse to exactly what he said he was avoiding: the use of intuitively held assumptions about what the relation is or should be.

Alexander does not, however, draw the proper conclusion from this, that is, that his technique does not avoid intuitive design, but in fact conceals the use of intuition and assumption under the guise of a procedure. This is probably because he is overly impressed by the technique he uses in order to make the transition from information and function to spatial and physical design, that is, the ‘constructive diagram’. Alexander introduces this through a disingenuous example. He shows that if you draw vehicular movement at a road intersection, representing the amount of movement by the thickness of the lines, then both the lines of movement and the thickness are a representation of the actual spatial solution required. However, this is almost the only kind of case where such a close correspondence of ‘constructive diagram’ and reality can be found, and it is so because it is a matter of engineering, not culture. The idea that this can be duplicated in to cases where the passage from function to form involves cultural patterning can only have the effect that Alexander proposes to ignore cultural patterning and impose his own cultural assumptions through the design.

By this disregard of culture and covert imposition of his own Alexander betrays the whole essence of his technique: at every stage of moving from function to form he has no alternative but to have recourse to his own existing, taken-for-granted knowledge of how function relates to form, and therefore how information relates to objects. In other words, however much he disaggregates the design problem, Alexander still proceeds in the way he originally objected to: that is, by
already ‘knowing’ the relation between form and function. This prior knowing covers exactly those aspects of design that we called ‘non-discursive’ in Chapter 1, where we noted that they were handled in the vernacular as the unconscious relational by-products of the manipulation of objects. We can then say of Alexander’s procedure that, far from replacing intuitive design with a procedure, he has retreated to a vernacularistic mode of design but only in order to transmit – and covertly – highly personalised values at the expense of those sanctioned by a culture.

Once this is seen, then it clearly also applies to the relationships among elements in the analysed programme, and to the relations among spatial elements in the ‘synthesised’ built form. In other words, in spite of all the ‘methodology’, it is intuitive knowledge that has actually done the entire design. The curious thing is that Alexander seems to have known this, and actually discusses it to some extent in his book: ‘The designer’, he says, ‘must already have some physical ideas about the problem in his mind when he starts.’ Indeed the designer must, and in fact they are invoked at every stage of the process. It is clear that these objections must afflict any non-trivial version of the analysis-synthesis model. To make the transition from information to object or from function to form we must use knowledge that we already have. This has an important implication: that design as a process of cerebration is not simply a procedure that draws on knowledge, but one where the process is actually based in knowledge and how the designer handles it.

On reflection, perhaps, we may see where the error lay in the analysis-synthesis model of design. The process from written brief to the proposal for an object describes the externalities of the process and how it is embedded in a wider social scheme of things. There is no reason to suppose that it is at the same time a description of the internalities of the process, that is, of the thought process by which the designer conceives the object. From what we have seen of Alexander’s methods, and from what we may infer from vernacular and intuitive design, the internalities of design are centred not around a procedure but around knowledge. The procedure proposed by Alexander may conceal knowledge, but it does not eliminate it. On the contrary, as we have shown, it is at every point based on knowledge of a certain kind. If we are to understand the internalities of design, then it is clear that we need, as a starting point, a model of design which acknowledges the centrality of knowledge rather than concealing it. How then can such a model be constructed?

Design as conjecture-test

The first step is easy. The analysis-synthesis model is, at root, a misunderstanding about scientific method, and the twentieth century has seen a revolution in the notions of ‘scientific methodology’. Our conception of science has moved on from one in which scientists were data gatherers who proceeded by ‘inductive generalisation’ (if the sun rises often enough, then we may assume it always rises) to construct theories which were ‘certain’ because they had been derived by ‘induction’. We now see science as a highly imaginative activity in which ‘data’ is not so much seen as the foundation for theory, as the means of testing and eliminating theories\(^{13}\) and as the source of intuitive theoretical leaps.\(^{14}\) Karl
Popper has been the most influential philosopher in this revolution. He argued that induction was not only unreliable, but also that one could not logically ‘induct’ complex models of the inner working of nature. Such models have to be first imaginatively conjectured, then refuted, or supported, by rigorous testing against data. No theory can ever be ‘proved’. Every theory is forever uncertain, and likely to be replaced by a better one. Even if the induction of theories (as opposed to simple statements about suns rising or sequences of numbers) were logically possible, then it would still be of little use to science since if theories were argued as having been derived from data, there would never be any further need to test them against data. Since often rival theories were supported by all but a very few items of data, then it followed that science could never progress unless it used those few items of data to refute, rather than the many to support, theories.

If then, science remains a rational activity in spite of being led by imagination and intuition, it is not clear why should we seek a stronger model for rationality in design. On the face of it, design looks much more like a process of conjecture-test than a process of ‘analysis-synthesis’. The usefulness of this argument (which I and others proposed in the early seventies\(^{15}\)) is that it relates intuition and reason in a lifelike way, and also suggests that design is not so very different from other types of human activity. For example, conjecture-test seems a reasonable model for speaking: one first conjectures a semantic complex, then tests it out by trying to say it.\(^{16}\) What distinguishes design from other activities is not its procedure but its object, and what makes design difficult is what is to be designed. Theorists should therefore, it was argued, shift their attention from the process of design to its product if their efforts were ever to be useful.

Now this argument is helpful as far as it goes. But it is clearly pointless to claim to have solved the problem of the design process simply by proposing an analogy to science. Design is a process which those who undertake it find quite different, and indeed it is clearly quite different in its outcome. All we have learned from the analogy with science is to dispense with an illusion: that rationality in thought is necessarily and only the rationality of a process or procedure. How may the argument then be developed further?

In fact, the relevance of the analogy with science is not yet quite exhausted, and we may usefully extend it a little. Just as a scientist cannot ‘induct’ a complex theoretical model from a series of ‘inductive generalisations’, so, as we have seen through Alexander, a designer cannot ‘induct’ a building from an analysis of the parts of a programme. The reason is simple and fundamental. Seen either as space or as form, a building is a configuration, and it is as a configuration that it works and is experienced. Now we know that the fundamental characteristic of a configuration is that every time it is changed, say by the addition or subtraction of an element or part, then the properties of the whole configuration change. The effects of regular changes, that is, those made by following consistently applied rules, can be broadly predicted, but the effects of small or inconsistent changes where no rule is applied from one to the next, cannot be predicted. There is, as we saw in Chapter 9, some degree of local indeterminacy from configuration to its structure.
The reasoning art

It follows that designers must think configurationally, and of course this is exactly what they do. The very centre of architectural design is the bringing together of parts to form a whole. Design is, manifestly, a configurational activity. Two consequences follow. First, since a configuration is a ‘whole’, whose properties may be significantly changed by quite minor changes, it follows that the designer must on the whole tend to design top-down. The object of the architect’s thought is a configuration, and a configuration is a whole entity, not an accumulation of parts. This of course is what we mean by a design conjecture. It is a configurational guess. It cannot be otherwise, since configuration cannot be arrived at by an additive process. Second, because a conjecture is configurational, and we know that configuration is handled by the human mind non-discursively, it follows that configurational conjectures are likely to be generated non-discursively. This of course is why architects talk of intuition. A process of configurational conjecture cannot proceed other than non-discursively. It cannot therefore either follow a reasoned procedure, nor can it proceed additively from the bottom up. Design is by nature a holistic, intuitive process, and this conclusion follows from a reasoned analysis of the process of design.

We therefore have a problem. If design is both a process of non-discursive conjecture, and at the same time a knowledge based process, how can these two facts be reconciled? How can we, that is, construct a model of the internalities of the design process which both ‘saves’ the apparent priority of intuition over reason in design, while at the same time saving the idea of design as a knowledge based process in which human reason is, par excellence, deployed?

The answer, as we will see, will lie in exploring the implications of the non-discursive in building – that is, the putting together or composing of a formal and spatial structure for design as a cognitive process. We have already noted in a previous chapter that, in the vernacular, the non-discursive aspects of the building, that is, the pattern of form and the pattern of space which give the building its cultural character, are recreated unconsciously through the manipulation of objects. The form, the spatial pattern and the functional pattern – the form-function relation, in short – are known in advance and need only be recreated. Because architecture of its nature unlinks the pattern aspects of the building from their dependence on social knowledge, then it is these non-discursive aspects which become uncertain. It follows that the problem we must solve in understanding design as a knowledge based process requires us to show exactly how those non-discursive aspects are handled, those aspects, that is, that Alexander concealed so thoroughly in his procedural theory.

The design process closely observed

Let us then define architectural design as a knowledge problem as clearly as we can. We must begin with a basic fact: a design is a representation, not a thing. To design a building is to create a representation of an unknown and original object whose properties must be well enough understood in advance in order for the act of building to proceed with confidence. The properties that must be predicted include of course all ‘technical’ aspects, that is, those aspects which are governed
by some kind of physical laws, such as the structural or climatic performance. However, they also include the non-discursive properties, that is, the putting together or composing of a formal structure and a spatial structure. The former is a matter of foreseeing the aesthetic and cultural significance of the proposed building, the latter a matter of foreseeing how the building as a spatial entity will work for the programmes of activity that are projected to take place in it (as well as others, as yet unforeseen, that might in time be added).

In architecture, it is these non-discursive aspects to which attention is most drawn since it is in these areas that architecture claims to create an entity ‘over and above building’. This means that in the design process there are two non-discursive problems: the generation of the proposed form, and the prediction of its functional properties. Our problem is to explain how each of these can happen, and in particular how each draws on and uses some kind of knowledge.17 The best way to begin might be actually to examine what happens – or what seems to happen – during the course of the design process. What can be seen to happen should at least be an outward and visible sign of the interior process of design.

If we observe the design process as it happens, then we find ourselves noting two apparently very different but closely interrelated kinds of activity. One is the proposing of conjectural forms as possible solutions to the problem in hand, usually through a series of sketches or drawings. The other is talking about forms, that is, explaining them, defending them, criticising them and proposing modifications, in effect discussing what they will be like if built. We may usefully note that the conjecturing of forms appears to happen largely in non-discursive mode, but that reasoning about forms happens primarily in discursive mode.

Let us look first at the more discursive aspects of the process, that is, at the issue of prediction. How is it possible to predict the performance of an unknown and original object? Considering the problem in the abstract, it would seem that the possibilities are limited. Prediction can either be made on the basis of analogy with known cases, or by appeal to principle, that is, to what is held to be true of all possible cases, or perhaps some mixture of both of these such as ‘experience’ which usually takes the form of a provisional principle based on personally known cases.

We will find this a useful guide in listening carefully to what is being said in the studio, and in particular, to how designers comment on design conjectures and predict what they will be like. One kind of inchoate comment, for example, tends to reflect non-discursivity quite directly. For example, ‘This is great’ or ‘I really go for this.’ However, this is rarely all that is said when offering such evaluations. Quite commonly it will be followed by some remark like: ‘Am I right in being reminded of ...?’; or ‘You seem to have in mind such and such.’ In other words, there is usually some attempt in talking about projected forms to invoke existing forms.

Noting this allows us to formulate a useful thought. Even if the spatial and physical forms of buildings are non-discursive, this does not mean that the process of pointing to comparisons between them is non-discursive. On the contrary, a process of comparison can be conducted without violating the non-discursivity of
form. One does not have to describe a form to make a comparison. A comparison can be agreed or disagreed with verbally on the basis of appreciations of the form which remain in non-discursive mode. Therefore, even though the object of evaluation remains non-discursive, we still find discursive reasoning being employed explicitly in a way in which it does not seem to be – or at least is not manifested – in the process of generating design conjectures. Designers rarely claim 'I got this bit from here, that from there', since this would suggest pastiche rather than originality. But discursive comparisons are a legitimate aspect of the process of design evaluation and prediction once the conjecture exists.

This tendency to invoke existing buildings becomes much more noticeable when it comes to predicting the functional performance of the building as opposed to evaluating its form aesthetically. We commonly find that the most persuasive and powerful arguments are comparisons with known cases which in some sense or in some aspect the design proposal resembles. There is an obvious reason why we should expect this to be the case. Architects design form, but hope for function. The most difficult aspect of prediction from an architectural conjecture is the prediction of function from form. It is only in existing buildings that function as well as form can be seen. By an empirical appeal to cases, then, function, the key unknown in the design process, can become part of the predictive reasoning about forms which characterises the design process.

For this reason, the forms of discursive reasoning that are used in foreseeing the architectural nature and predicting functional performance tend to be of an empirical kind. All other arguments seem to be weak compared to these, and in practice we find that empirical appeals are often the final arbiters. This is why, in the discursive or predictive phases of design, we note the predominance of reasoning, which is at once empirical and discursive. Indeed, it is their empiricism that makes these phases discursive.

It is good that it should be so. If design conjectures were justified by appeal to principle, then there could be little effective critique of designs on the one hand, and little development of principle on the other. The situation would be analogous to the pre-Galilean situation in science when, under the influence of the Aristotelian methodology, science attempted to proceed from general axioms to particular phenomena, with the effect that no learning from unexpected phenomena was possible. In design, the situation is analogous. The testing of designs against known cases will always be the most flexible and potentially undermining technique for the evaluation of design conjectures. Through it, the real world is brought into the world of design, and is held there in much the same way and for much the same reasons as it is in science.

We have then it seems defined at least one phase of design as a knowledge based process, and one kind of knowledge that is deployed in the design process. Empirical knowledge of the non-discursive aspects of buildings, especially the relation of spatial form to function, are fundamental to the predictive or discursive phases of the conjecture-test sequences which characterise the design process. We
may also note that, as we learn from Hacking, in science empirical phenomena may also be the spark for theory, not by any logical procedure but by exactly the kind of non-discursive leaps which characterise scientific theorisation. In architecture, similarly, existing cases – that is, known architectural phenomena – can be the spark for a new and original design.

Where do architectural ideas come from?

But what about the first non-discursive phase of the process, that is, the generation of conjectural forms? Let us begin again by looking at the evidence that design shows of the process of conjecturing forms. Observing the process, what we usually see is a series of drawn conjectures. We rarely find a single conjecture and quite rarely a single kind of conjecture. More commonly we find families of conjectures reflecting different possible strategies in solving the problem in hand. What we actually see, then, is a range of possible forms, a range which clearly derives from a much greater possible set and which will in time be reduced to a single proposal.

In other words, on the face of it, what we see evidence of in the conjectural phases of design is not a translation from information to object or from function to form, but something much more easily conceptualised: a translation from architectural possibility to architectural specificity. It may of course be objected that this proposition is self evident. But from the point of view of how we conceptualise design as a knowledge-based process it is very important. It implies that the generation of form, the most problematic of all aspects of design from the point of view of the analyst, is not a matter of translating between incommensurable domains, but a process contained, in the main, within a single domain: the domain of architectural form. If this is the case, then it follows that the most important element in the process will be how the designer understands the field of formal and spatial possibility.

This is not all that we see on the surface of things. A design conjecture is not simply a conjectural form but a formal conjecture embodying a functional conjecture. The formal conjecture in effect comes to us already replete with a functional prediction which offers a solution to the problem posed by the brief. We must then conclude that notions of function and their relation to form are also present in the designer’s understanding of architectural possibility, at least in such a way as to support a formal conjecture which is at the same time a function prediction. In effect the designer is mapping not only from knowledge of formal possibility to a conjecture for formal specificity, but also from knowledge of functional probability to a functional prediction.

We might say that seen as a cognitive act the conceptualisation of a form seems to be a matter of translating from knowledge of formal and spatial possibility to formal and spatial actuality, and from functional probability to functional prediction, in the light of an abstractly stated brief. In other words, design is not a matter of translating between incommensurable domains, but a process of transformation within domains, exactly those domains which are linked in the very nature of buildings. If follows that the knowledge that designers use in the generation of design conjectures is, like the knowledge used in testing conjectures,
in some sense knowledge of buildings, but in this case, knowledge of possibility rather than actuality. The question is: what is this knowledge like? In the testing phases the knowledge was clearly empirical knowledge of real cases, and it was possible to argue that this was the best form for the necessary knowledge to take. Does the same hold for the generation of design conjectures?

Let us immediately set up a guide post. We saw in analysing the vernacular that the creation of a vernacular form meant holding steady ideas to think with about relational structures in order to manipulate the ideas we think of, that is, the physical and spatial elements that are composed into a building. The analogy was with language where the creative act of language is only possible by holding steady these relational ideas to think with that we call grammatical and semantic knowledge. It was also suggested that architecture meant taking these non-discursive structures into the realm of reflective thought, in much the same way as the scientist takes into conscious reflective thought the conditions for the existence of phenomena presupposed by the craftsman. Through this transformation of knowledge, architecture meant not simply reproducing a culturally sanctioned non-discursive pattern, but by reflective abstraction on the possibilities of such patterns, to create new non-discursivities.

But how does reflective abstraction come to be embodied in the act of design? To understand this we must first recognise that design is not itself an act of reflective abstraction. On its own, reflective abstraction can only lead to the understanding of forms. Design is about the creation of forms. It is a process of concretion dependent on abstraction but not in itself a process of abstraction. This process of concretion must incorporate reflective abstraction, but not in itself be simply reflective abstraction. How can this happen? The answer is simple, and, once stated carefully, quite obvious. It is in the nature of creative acts of concretion, like design, that some set of ideas to think with must be held steady, temporarily at least, in order to manipulate and experiment with the ideas the designer thinks of in searching the field of possibility. This is because the act of – let us call it non-discursive concretion, the creation of a non-discursive conjecture for a physical and spatial form – is not in itself a simple application of reflective abstraction, but a deployment of reflective abstraction to construct and search a field of possibility, in such a way that the reflective abstractions construct that search and inform the designer when he or she might be near what is being sought.

In other words, in architecture the reflective abstractions are inserted into the design process as ideas to think with to be temporarily taken for granted in order to construct and search a field of possibility in terms of those reflective abstractions. In design, ideas to think with are necessary because they inform the designer what he or she is looking for and constructs the field in such a way as to allow it to yield to his or her efforts. A good designer in effect constructs his or her own ideas to think with and deploys them as structuring mechanisms to search the field of possibility and guide him or her as to the degree of success or otherwise of the search. The act of design is such that it must, temporarily at least, hold steady ideas to think with in order to manipulate and experiment with the ideas that a
designer needs to think of. It is necessary in the logical structure of the act. In order to propose such and such a form and such and such an outcome the designer must know, or believe he or she knows, not only the non-discursivities of form and space but also what in general is the effect of forms on outcomes.

Solution typologies

The question is: what are these ideas like? And where do they come from? Again we can most usefully begin by looking at the evidence provided by the design process itself in action. This time we should look at the earliest stages, since it is the sources of design conjectures for which we are now looking. We cannot begin earlier than the brief itself, that is, the information that initiates the design process in the first place.

We have already discussed the problem that when we name a kind of building, says a ‘school’, we are already referring to a very complex set of ideas which include not only buildings with certain characteristic appearances, but also certain patterns of activity carried out by people with well-defined social roles in certain kinds of spatial arrangements. In other words, the common sense use of a word to name a building already describes possible relations among exactly those non-discursive aspects of buildings which the designer will seek to relate through design: that is, a functional programme, a spatial pattern for that functional programme and an expression of ‘schoolness’ through the physical form of the building. On reflection, we must expect this. It is the other side of our analysis of the vernacular. All of us, not only builders, already take part in an ongoing building culture, through which we are able to understand and use buildings, for more or less the same reasons that builders are able to build them. As with the builder, however, the cultural knowledge of building that we have is non-discursive insofar as it deals with the building as a relational complex of form and space. We must note also, that, as with the vernacular builder, non-discursive knowledge, because it is relational, is essentially abstract, although we may hold it together by images of physical objects, just as the builder reproduces it by manipulating physical objects.

If a whole field of non-discursivity in which forms of human activity, spatial patterns and formal expressions are interrelated is activated by the use of words like ‘school’, then it follows that it is also activated by the brief. The complex of ideas activated is unlikely to take the form of a single cultural type, as we would expect it to be in the vernacular, but that of a set of possibilities which reflects current, recent or historical solutions to that kind of design problem, and which manifest themselves to the designer as a field of strategic choice. We need a name for such fields of strategic possibility defined by past practice, and since elsewhere\(^\text{19}\) it has been called a ‘solution typology’ we can continue to use this expression. Now the critical fact about a solution typology is that it already constitutes a set of non-discursive ideas of exactly the kind the designer requires, and so offers them an immediately available set of ‘ideas-to-think-with’ in searching the solution field. In exactly the same way that the vernacular builder uses the phenotypical means at his disposal to transmit abstract non-discursivities through the organisation of the form and the space, so
the designer reviewing precedent, consciously or unconsciously, absorbs the non-discursivities contained in each of the solutions. The solution typology is therefore made of genotypes, or rather of phenotypes which imply genotypes. The designer does not have to use these genotypes, but the ideas are there, and their essentially unconscious and abstract nature means that it will not be easy to be free of them. For any design problem, we may then note that there exists a pregiven historical set of non-discursive genotypes reflecting the recent history of that problem. On reflection, the existence of such historical sets is the precondition for being able to identify a ‘design problem’ in the first place. In spite of first appearances, a ‘design problem’ is a historical conception.

One way in which designers often recognise that design, even the most innovative, happens within this context of ideas defined by the history of architecture to that point is by making a review of existing solutions to the type of design problem posed by the brief. There is a well established term for the cases so reviewed. They are called ‘precedents’. Precedents are existing examples of solutions to a particular design problem. Reviews of precedent rarely look at one single kind of solution. They usually show as wide a range of solutions as possible, including those that are not considered good. We rarely find however that the review of precedent is followed by emulating one precedent or other. On the contrary, where the review of precedent is explicit in this way the subsequent design usually makes it clear that the purpose of the exercise was not to provide a best case exemplar to follow, but to set up something like markers in the field of possibility for a new departure. The review of precedent is not intended to reduce the originality of the new design, but on the contrary to ensure its originality by laying out precedent in a clear and explicit way. In making a review of precedent a designer is acknowledging the historical continuity not only of architectural solutions but of architectural problems. It acknowledges that in architecture at any point in time we have that kind of problem because we already have that kind of solution.

Solution typologies, because they imply a range of non-discursivity in a relatively abstracted form, can in themselves provide cognitive mechanisms though which the designers can structure the field of possibility. But they can do so in two ways, either explicitly, as we find when a conscious review of precedent is made, or implicitly, when precedent is used in an unacknowledged way to structure the search for a solution. The latter strategy will always be a conservative one, in the obvious sense that it will always tend to conserve the existing solution typology. The former strategy, by acknowledging the solution typology, will tend to be more progressive since by setting out precedent it creates architectural conditions in which the simple following of precedent is more difficult.

Now whether or not the designer makes an explicit review of precedent, it is unavoidable that existing genotypes are at least a powerful, if ghostly, presence in the process through which design conjectures are formed. Established genotypes can invade the process of architectural creation by becoming part of the ideas to think with that inform the search for a design conjecture, with or without the
compliance of the architect. It is entirely to be expected then that architects will, while exploring formal possibility, find cultural genotypes attached to at least some of the ideas they are thinking with. The evidence of architectural history is that the process of cultural evolution which we call the history of architecture is to a considerable extent informed by the cultural stability induced by the use of existing solution typologies – or rather their genotypes – as ideas to think with in searching the field of possibility for design conjecture.

We could think of this type of architectural production as ‘normal’ architecture by analogy with Thomas Kuhn’s conception of ‘normal’ science as ‘puzzle solving’ within an unchallenged paradigm. The analogy is not precise. The architectural field is more fluid. There is no one paradigm. Even so the broad analogy is probably correct. The act of architectural creation transmits some degree of cultural continuity because existing solution typologies are the most powerful and naturally available ideas to think with in the generation of design conjectures. It is this that creates the sense that in spite of each building’s being an individual, buildings do form gradually evolving species. We see now how the genotypes of those species are transmitted through the comparative indeterminacy of individual creation.

Solution typologies and normal architecture
There are, however, serious dangers in the use of solution typologies. Epistemologically, we can say that the existence of solution typologies and their powers to transmit non-discursive abstractions, tends to vernacularise architecture, that is, to return it from its aspiration to a universal transculturality back in the direction of socially normalised intentions and forms. Is ‘normal architecture’ then, defined as architecture in which the influence of prevailing solution types is paramount, the same as the vernacular, that is, no more than the transmission of culture through artefacts?

The answer is that it is not. Normal architecture uses similar cognitive mechanisms to the vernacular in producing designs, but this does not mean that the non-discursive knowledge that informs designs is of the same type. On the contrary, it is likely to reflect two fundamental new facts: first, the existence of architects as a specialised knowledge generating and knowledge using group, and, second, the fact that this specialisation is legitimised and made viable by the wider social structures of which it forms a part. This creates a new possibility: that ‘architectural knowledge’ may come to reflect not simply knowledge that architects share with other social members through common culture, but knowledge which reflects the fact that architects act on behalf of others in certain social situations. In other words, architecture has the potential to represent cultural partisanship as much as cultural agreement.

The degree to which this happens depends on a new factor which arises alongside the coming into existence of architects as a specialised group: the continuing debate between society and its architects about the aims and purposes of architecture. We can follow current fashion and call this ‘architectural discourse’. Architectural discourse arises from the simple fact that because through building social life is constituted in organised space, and social values are represented...
in visible form, architecture cannot be socially neutral. On the contrary, every architectural act directly engages the social, and remains in a permanent dialectic with it. It is the intimacy of this relation that ensures a second, higher level dialectic between architecture and society: one between architectural theory and social ideology in the formation of architectural ‘intentions’. Architectural intentions are the general propositions that stake out the points of aim for architectural design. They are likely to involve quite complex propositions about the relation of architecture to life. Such propositions are theoretical in that they propose, however broadly, an approach to spatial and formal configuration. As such they engage with theoretical debate within architecture. On the other hand, these propositions are also social propositions, and as such inevitably provoke and become part of wider social debate.

Because this is so, statements of architectural intent cannot and should not be taken at face value. The sheer technical intimacy of the involvement of architecture with the social leads it into a permanent danger: that the theoretical and intentional abstractions which inform design and tell it where to aim will become subordinated to prevailing social ideologies. This leads architecture into a continuing intellectual struggle. On the one hand, the closeness of this involvement of architecture with society, necessarily draws architecture into the permanent debate that every society has with itself about its nature and direction. On the other, the nature of architecture as reflective thought and action in exactly those aspects of buildings which are by their nature social, leads architecture to draw back from this debate into preoccupation with its own autonomy. This can appear paradoxical, but it is a structural necessity. Architecture is technically enmeshed in society, yet its reason for existence is to break free from this enmeshing, and to propose new forms and freedoms altering the terms of this enmeshing.

This two-sided debate is what we call architectural discourse, that is, the continuing debate about architectural ideas and their relation to social values that is conducted between architecture and its public. In spite of its need for autonomy, discourse in architecture, as elsewhere, is not a freestanding thing, but a constantly shifting bundle of ideas which reflect and contribute to more general patterns of discourse through which a society debates itself with itself. Architectural discourse is one of the means by which architecture both ties into and struggles to be free from the gradual evolution and adaptation of the cultural and institutional structures which mark every modern society. Thus although architecture is in principle a freeing of building from the specific constraints of a culture, the need to embed this freedom in discourse in order to sustain it ensures that architecture can never assume its freedom from intellectual and social context. The question ‘where do architectural ideas come from?’ is a question to which an undermining answer is always possible: that any architectural idea may present itself as free-standing and clear of social construction, but time may show to have been an unwitting implement of a specific ideology.
A constant question-mark therefore hangs over statements of architectural intent. Are they autonomous constructs of architectural thought, and therefore constructive offerings from architecture to society, or are they ideas which are in some sense already received from society, imprinted on architecture through the common processes by which social and cultural change become normalised into social behaviour and institutions? In short, are the notions about architecture and society, that are expressed through the changing language of architectural ‘intentions’, in some sense socially constructed?

This question is most pressing in the matter of space. An architectural intention is usually a proposal to create a social outcome through a spatial form. Intentional statements in architecture therefore inevitably associate social values with spatial concepts, and become in effect propositions about the relation between architecture and how life should be lived in space. Theoretically, they are form-function propositions. For example, propositions about the relation between housing layout and community formation, or between open-plan offices or schools and organisational functioning, or between domestic space design and family behaviour, are all form-function propositions relating space to concepts of normal or desirable social behaviour. Sometimes such propositions are quite explicit, but quite commonly they become implicit, transmitted through the accepted forms of building and supported by the common words and terms we use to talk about them.

Because this is so, architectural theory has two objects of study, which were at the same time its primary sources. One is the objects of architecture, that is, the buildings and places that exist and could exist. The second is the study of ‘intentions’, and especially of the ‘ideas-we-think-with’ that underlie intentions in architecture, that is, the shifting array of concepts that underlie architectural discourse and which seem often to govern the broader changes in architectural forms that we see over time. Many would see the latter study as primary, arguing that discourses are prior to buildings and buildings can only be rendered intelligible as social and architectural products through their relation to discourses. However, a key lesson from architectural experimentation in the twentieth century is that there has often been a mismatch between the discourse of architectural ideas and intentions, and the actual performance of the building and spatial forms which express those intentions. We cannot proceed on the assumption that there is a tight relation between idea and reality. We may well choose to study the two in parallel, but in order to do this we must also learn to study each separately. The parallel influence of socially constructed intentions on the one hand and available solution typologies on the other together constitute a potential prison of idea through which architecture, while still pursuing its aim of freedom and autonomy, becomes in effect the inchoate and unwilling servant of social forces.

A case study
There is a paramount example of this, which concerns the origins of the strange landscapes described and discussed in Chapter 5, and which were the subject of an earlier paper called ‘Against enclosure’. In this paper it was reported that by
The reasoning art

examining a large number of cases of social housing design, in the mid-twentieth century a consistent set of spatial ideas could be identified, coupled to equally pervasive social ideas. The spatial idea centred around the idea of ‘enclosure’: that good space was enclosed space. The social idea was that such ‘enclosures’ had to be identified with well-defined, and preferably small, groups of people, and exclude others. The guiding idea that linked the two was that if a group of neighbours was forced into face-to-face relations, and others were excluded, then this group will begin to form a small community. The same idea was applied at the higher level of the ‘enclosure of enclosures’, or ‘cluster of clusters’, to create ‘local communities’. Architecturally, these led to a preoccupation with grouping dwellings so as to associate identifiable and distinct external spaces with each group of dwellings, coupled to an overarching geometry, so that the relation of the local group element with the larger whole would be clearly manifested in the plan. The whole scheme of thought was describable in terms of three linked principles which could be applied to generate a ‘layout’, regardless of context: ‘enclosure, repetition, hierarchy’. These three linked ideas were so pervasive, and could be found under many different types of building and spatial geometry, that they seemed in themselves to constitute a kind of ‘design paradigm’ – one which was constantly transmitted through the solution typologies which embodied it and which offered themselves as precedent for public housing.

Unfortunately, it was exactly this set of ideas that created the fragmented and segregated landscapes that were the object of our pathological investigations in Chapter 5. The notion that small-scale localised ‘enclosures’, each one corresponding to a small, identifiable community should be the primary element of the new housing area, was exactly the means by which the virtual community, brought about by the natural co-presence and co-awareness arising from everyday movement in street based areas, was destroyed. The true effect was to convert what had been previously a community linked by the continuous, unbounded public space of the street system, into a series of discrete pockets, each as removed from the humanising influence of the public realm as the next – in effect to create a complex and labyrinthine zone between the dwelling and public space. As we saw in Chapter 5, the crisis of modern public housing was the crisis of this space. Whatever the declared communitarian intention of the creators of these ‘estates’, the effect was to remove the least privileged groups in our societies from the public realm, and consign them to zones which no outsider entered without a strong reason, and which were therefore known only to their inhabitants. This is the durable legacy of the bureaucratisation of architectural thought which brought these zones into existence.

Even at the small scale of the ‘enclosure’ itself, common sense, and a little more pragmatic thought, could have warned designers that their intentions were unlikely to be fulfilled. Human beings tend to have special social rules of politeness and avoidance to govern their relations to neighbours, precisely because these relations, because they are ever-present, could easily become too pressing and obtrusive. Exaggerating this face-to-face relation by spatial design, and at the same
time eliminating the leavening of strangers as found in ordinary streets, seems far
time more likely to reinforce these rules of control and avoidance than to alleviate them.
We should expect more avoidance, and more investment in the control of over-
pressing neighbourliness in these isolated face-to-face groups. The question is not
so much: how did the neighbourliness paradigm fail? but: how could the fiction of
forced interaction have prevailed for so long?
The historical work to trace the evolution and constant transmutation of
this set of spatial and social assumptions that underpinned so much mid-twentieth
century public housing has not been done, but three things can be clearly said. First,
that in spite of its ‘soft’ expression in terms of neighbourliness and community, the
essential idea of enforced face-to-face interaction is thoroughly mechanistic in exactly
the sense that was argued in the discussion of the ‘paradigm of the machine’ in
the previous chapter. Second, we can note the frequency with which the ‘enclosure,
repetition, hierarchy’ paradigm was proposed as a novel solution to exactly the
problem that it had itself created. For example, in the same year that Kirschennann
and Munschalek published their book from which so many of our cases of ‘enclosure,
repetition, hierarchy’ were drawn, the Greater London Council published new design
guidance on housing layout66 intended to correct the errors of the past and propose
new principles. In fact, in spite of much new language, what was proposed took
exactly the same form as what it was seeking to replace: ‘enclosure, repetition,
hierarchy’, dressed up in new words and diagrams. Third, each element of the design
paradigm can be found at each stage of the evolution of social housing policy,
and in fact can be traced back to its very beginning in the ‘philanthropic’ housing
programmes of nineteenth-century London. So pervasive are the ideas, in fact, that it
is hard not to see them as the design paradigm of social housing, a design solution
which society, through architecture, imposed on certain sections of its population.
Both of these facts suggest that the design paradigm of ‘enclosure,
repetition, hierarchy’ was a means by which those very same social engineering
aims in architecture that it sought to supersede were perpetuated. We should not
be surprised at this. It is in the nature of paradigms that they can guide apparently
new proposals along the same underlying conceptual tramlines as those from
which escape is sought. The widespread availability of a solution typology based
on this scheme, linked to habitual statements of social intention legitimised by the
public agencies which at the time controlled a social housing programme on a huge
scale, must go some way to understanding the power of this idea to be constantly
reformulated and accepted as new, when it manifestly was not.
The social knowledge embodied in the solution typologies in a society with
architecture is not then the same as that which underpins the vernacular forms of
societies without architecture. On the contrary, they are likely to be influenced by
the types of structure prevalent in a society, and therefore to reflect its biases. The
problem with such solution typologies, especially if they are sanctioned by explicit
design guidance, is that their social origins tend to be as concealed from view as
their theoretical nature is obscure. Non-discursivity is, as it were, turned on its head.
The reasoning art

It becomes a means not of expressing culture but of imposing culture, often for social ends which are not explicit. In such circumstances, architectural intentions become an object of legitimate enquiry, but the natural non-discursivity of solutions make it very hard to bring to the surface any concealed ideological content. However, an architectural tradition which fails to free itself from such a conceptual prison, as happened during the modern housing programme, is in danger not only of losing its identity as architecture, but also of acquiring another, more dangerous identity: that of an unwilling and servile agent of social forces of which it has as little understanding and over which it has no control.

Style as non-discursive idiolect

The essence of the ‘enclosure, repetition, hierarchy’ paradigm is that it substitutes a social ideology of ‘desirable separation’ for an analytic theory of the relation between space and community. It then works in the manner of a vernacular, in that ends – in this case, in my view, malign ends – are guaranteed through the manipulation of things, that is, the given solution typologies. At the same time, it creates the appearance of architecture, in that an illusion is set up of an architectural debate over ends in the light of means. What is really going on is vernacular in the sense that covert ends are being transmitted by the manipulation of means, but the ends are no longer those of a shared culture, but those of partisan social programmes.

This debased mode of architectural operation has played such a significant role in the twentieth-century history of architecture that it deserves far more intensive study than has so far been devoted to it. It amounts to nothing less than the subversion of architecture towards what we might call bureaucratic vernacularisation, in the name of a partisan social engineering by spatial means. The question for a theory of design in architecture is then: how may these apparent consequences of the existence of architects as a special interest group in a society with inequities be avoided? The question has two aspects. How can solutions be generated outside the prevailing influence of solution typologies, with all the dangers that their uncritical use can bring? And how may innovative solutions be predicted? Only if these questions can be answered can we see the grounds of the existence of architecture in the sense that we have defined it, that is, as an autonomous domain which debates with, responds to and creates new possibilities for society, but is not subservient to it. It follows from all our previous analysis that these are knowledge questions. What then are the knowledge conditions for an autonomous architecture?

Once again let us begin by looking at the evidence provided by the design process, and especially by its visible products. The most obvious thing that we notice in a creative designer’s work is that it is recognisable. It constitutes what seems to be in some sense a species of architecture in itself. It has, in short, what we call style. Now style is clearly a non-discursive concept. Style exists where we note in a set of cases non-discursivities, whether formal or spatial, which appear to be unified by common principle. To use a form of words which is effective while being fashionable, we might say that by style we mean a non-discursive ideolect. Style gives rise to the sense of a species of architecture where the genotype
The reasoning art

does not seem to arise from the transmission of a culturally normal form-function solution within the existing typology, but through a characteristic structuring of the non-discursive means themselves, again either formal or spatial. The existence of style means that what is taken into reflective abstraction is not a range of possible solutions but the formal and spatial non-discursive means by which solutions can be created. A style, in short, is a genotype of means. It creates an individualised species of architecture which cross-cuts the architecturally normal cultural typing and may indeed run across a range of building types.

Because the sense of style arises directly from the non-discursive means, and because we can be sure that we could not recognise the existence of a style through a single case – though a single case might generate a style – it follows that our sense that the non-discursive ideolcet that constitutes the style is essentially an abstraction. It is the common ground of a set of cases. It is yet another instance of our ability to extract the abstract from the concrete, the genotype from the set of phenotypes, and to re-concretise the abstract genotype in a different form in a new phenotype.

Our concept of style in architecture tends, of course, to be bound to its most obvious manifestation in how a building appears to the eye, that is, to the non-discursivities of form. Such a limited view would not survive a careful examination of the works of individual architects. Good architects have spatial, as well as formal, styles. Sometimes this is quite easy to see, for example in the work of Frank Lloyd Wright. But even in such cases, it is difficult to explicate. Experimental studies suggest that explicating architectural genotypes of means is rather more difficult than explicating vernacular genotypes of ends. But it can be rewarding, and is essential to our understanding of individual architects' work. For example, in a comparative analysis of five houses by Loos and five by Le Corbusier, a graduate student at UCL was able to show that although in each house there was configurational differentiation of functions, there was no consistent pattern within either architect's work of the kind that one so often finds in vernacular samples (see Chapter 1). It was not that the different functions were not spatially differentiated, but that the pattern of differentiation was not consistent across cases. It was as though each recognised the principle that functions should be spatially differentiated, but that this was regarded as a matter of experiment and innovation, rather than the reproduction of a culturally approved genotype.

However, what the student was able to show was that each architect had a distinctive spatial style, in that whatever each was doing with the functional pattern, distinctive spatial means were used to achieve the ends. For example, in the Loos houses, adding visibility relations to permeability relations increased the 'intelligibility' (as defined in Chapter 3) of the space pattern, whereas in the Le Corbusier houses it did not. Similarly, in the Loos houses, the geometry of the plan reinforced aspects of the spatial structure of the plan, in that major lines of spatial integration coincided with focuses of geometric order, whereas in the Le Corbusier houses they did not. By examining the houses as sequences of isovists, the student also showed that in Loos houses the isovists are very large and complex,
but relatively uniform, whereas with Le Corbusier the isovists are more selective in the spatial relations they show from the line, with each episode tending to be dramatically different from the others. In these respects, the student argued, the two architects were adumbrating more fundamental – almost philosophical – differences through architecture: Loos to create houses which are novel expressions of culturally defined habitability, Le Corbusier to create less habitable, more idealised domains of rigorous abstraction. Neither Le Corbusier nor Loos was seen to be denying the social and cultural nature of the domestic interior. But each, by satisfying the need to give space cultural meaning through functional differentiation first one way then another, but with a consistent spatial style, is giving priority not to the functional ends of building but to the architectural means of expressing those functional ends. The genotype of these houses lay, it was suggested, not in functional ends, as in the vernacular, but in the way the architectural means are used to express the ends. But the means modify the ends by re-expressing them as part of a richer cultural realm.28

This distinction between ends and means is, I believe, fundamental to the definition of architecture offered earlier. It suggests that we can make a useful distinction, in architecture as elsewhere, between the realm of social meaning and the realm of the aesthetic – in this case the spatial aesthetic. The cultural and functional differentiation of space is the social meaning, the spatial means is the basis of the spatial aesthetic. The former conveys a clear social intention, the latter an architectural experience which re-contextualises the social intention. Meaning is the realm of constraint, the spatial aesthetic the realm of freedom. The spatial meaning of form expresses what architecture must be to fulfil its purpose as a social object, the spatial aesthetic expresses what it can be to fulfil its purpose as architecture. But although space moves outside the realm of specific codes of social knowledge, it does not lose its social dimension. The relation between spatial and social forms is not contingent, but follows patterns which are so consistent that we can hardly doubt that they have the nature of laws. The spatial aesthetic carries social potentials through these laws. The autonomy of architectural means thus finds itself in a realm governed by general principle, with its freedom restricted not by the specific spatial demands of a culture but by the laws of space themselves.

Two types of theory
This analysis of the notion of style suggests that it is more than a matter of recognisable appearances. It seems to go to the heart of the nature of architecture. This is the case, and a further review of the generative stages of design will suggest why this is the case. We may begin by reminding the reader of a distinction made in Chapter 2 between theories as they were used in art and theories as they were used in science. In science a theory was about understanding, and once understanding was achieved then action could follow. A theory in art is about creation, in essence about possibility. Theories in art work by suggesting new ways to structure the search of the field of possible forms. Such theories are not universal, but simply generative in that they use abstract thought to generate new
possibilities in art that had not been seen before.

It is clear that the idea of style as non-discursive ideoloc is and as a ‘genotype of means’ has a directly analogous role. Its effect is to construct an abstract means of searching a solution space, that is, to act as an ‘idea to think with’ at the level of the non-discursive means of architecture, opening up routes to possible architectures through the taking hold of the means by which non-discursivity is created. Because it is so, it leads to quite new ways of searching the field of possibility. While a solution typology structures the field of possibility by identifying a series of discrete islands, so that search tends to be restricted to the vicinity of those islands, a style as non-discursive ideoloc defines a continuous web within the whole field of possibility, creating a density, richness and potential originality of solutions far exceeding that of any typology. Mitchell summarises this succinctly: ‘Possession of a style is essential. Without it, an architect attempting to design is like the scholars Gulliver encountered at the Academy of Lagado, who tried to write books by randomly combining words. That way, one would never get to the end.’ This is true in a profound sense. It arises from the nature of solution spaces and how they can be searched without the guidance of pregiven solutions. One might add of course, that this is only the case if one wants to create architecture.

But however much we complicate the idea of style, its relevance is confined to the first phase of design, the generation of a possible solution, not the second stage of predictive testing. It was suggested in Chapter 2 that the distinctive feature of architecture is that it requires both theories in the sense in which artists use the word and also theories in the sense in which scientists use the word, that is, theories of possibility and theories of understanding; theories which tell us where and how to search, and theories that tell us what we have found. We now see clearly why this is the case. It is precisely because the solution field has been searched without the functional guarantees that solution types seem to offer (however misleadingly) that the designer is now in greater need than ever of ways to solve the second aspect of design: the phase of predicting functional and experiential outcomes. The problem is now a great deal more difficult, since by definition the solutions found, because we have not been led to them by known solution types, are more likely to be remote from experience and from precedent. In such cases, the means of prediction in design must move away from precedent and towards principle. Since these are the only two possible modes of foreseeing future performance, the designer is forced, through the very nature of the freedom that has been exercised in generating solutions, into the realm of theory. The more original the architecture, the greater will be this dependence.

In a sense which is critical to the very existence of architecture, then, style and theory are parallel freedoms. Innovation can only be within the realm of the humanly possible on the basis of theoretically analytic knowledge because only this can guide the predictive aspects of design where no guarantees of cultural or ideological conformity are available through the vernacular or solution types. Theory is fundamental knowledge of possibility and therefore of limitation. There is
therefore an objective need to associate non-discursive ideolatry with analytic theory. Of course this would only be the case if there were objective limitations to what is architecturally, as opposed to technically, possible. We have seen that there are such limitations. Fundamentally, theory is knowledge of these limitations.

On this basis, and only on this basis, the idea of analytic theory can be built into that transformability of culture which is architecture. Without analytic theory, as we have seen in some phases of twentieth-century architecture, architecture defeats itself by pursuing freedoms which are beyond its theoretical powers. Analytic theory is the price that architecture must pay for freedom. Without it, the two sides of architecture – that it is at once individual creation and social transmission – move into arbitrary and uncomprehending conflict. With analytic theory, the debate over architectural ends is an open debate, without it, a concealed paradigm. Analytic theory is, in short, the price of architectural freedom. What is no longer interesting is the idea that architectural freedom can be exercised outside the limitation that the laws of human spatial existence and the laws of space itself place upon possibility.

We can now at least see how important our original question was: if architecture is the taking hold of the configurational content of building, and making it the basis for reflective creation by freeing it from cultural stereotyping, how is it that the individual act of architectural creation is able to carry within it messages from the society in which it was created. The answer, we now see, is simple and fundamental. Architecture is a social art because the primary material of the art – the field of configurational possibility for space and form – is also the means by which buildings have intrinsic social contents. Space constitutes and form represents the presence of the social in the very form of the milieux in which we live and work. In the vernacular, the fit between forms of life and built forms is given by the common cultural programming of both. Architecture dispenses with the programming but it does not dispense with the relation that is guaranteed by the programming. The relation of form to life becomes a question to be resolved, no longer a matter of cultural habit. The relation can only be formulated on the basis of knowledge of some kind. The designer has to assume knowledge of the form-function relation, and assume that it is of sufficient generality to be used in a range of situations. Design can only proceed on the basis of assumed knowledge about the relation of spatial form to life. This is why most statements of architectural intention are statements of this kind, just as most architectural theories are attempts to formulate these relationships in a more general way. It is at this point, through the need for propositions, both specific and general, that link form to function, that architecture is tied to society and becomes the social art. In a sense, architecture is tied to society by its theoretical needs.

It is then a simple fact that the logic of the design process makes the link between architecture and society. But it does so either on the terms of architecture or on the terms of society. It depends on how far the guiding theoretical ideas are social knowledge or genuinely analytic knowledge. In the worst case, the takeover of areas of architecture by ideological formulations instead of analytic theories can
lead architecture into its opposite: a kind of degenerate quasi-vernacularism, lacking the natural cultural fitness of the vernacular or the considered strangeness of genuine architecture.

The only alternative form of knowledge is theoretical knowledge. Theoretical knowledge is by definition the attempt to make the non-discursive discursive, that is, an attempt to acquire knowledge of non-discursivity. Like all theorisation it is of course liable to error. But its orientation towards the explicitness of non-discursive knowledge means that its errors cannot be so easily perpetuated as are the errors institutionalised in solution typologies. This, in the last analysis, is why the project of architecture and the project of architectural theory are the same project. Theory is the precondition of the liberation of architecture from the social knowledge which dominates vernacular design and which continually threatens architecture with bureaucratic extinction through typological guidance. Architecture as we know it necessarily oscillates between these two poles of theoretical and social knowledge, sometimes not knowing when it is informed by one and by the other. One thing is clear. It is only through the theoretical study of architecture that we can begin to become truly aware of when we are being creatively free in the realm of the non-discursive and when we are, without being fully aware, following the hidden dictates of society.

This is why great architecture tends, if not to objectivity, then at least to a belief in its own objectivity. Lesser architects assert that they create. Great architects believe they discover. This difference is due to the intervention of that peculiar brand of reflective thought which stands on the foundation of theory, yet when applied in creative mode breaks bounds and changes the architecture of the past into the architecture of the future.

Notes
4 Alison Ravetz, in conversation.
The reasoning art

10 How the argument about ‘design method’ was intimately related to one of the key philosophical objectives of modernism, that is, to replace a historically and aesthetically dominated architecture with an analytically and socially based architecture, can best be seen in such texts as Sir Leslie Martin’s lecture at the riba in April 1967 published as ‘The architect’s approach to architecture’, RIBA Journal, May 1967.

12 Descartes p 87.

13 K. Popper, The Logic of Scientific Discovery, Hutchinson,1934; Conjectures and Refutations, Hutchinson,1968; and Objective Knowledge, Hutchinson, 1972.

17 The reader is also referred back to the discussion of this problem in Chapter 2.

18 Hacking, Representing and Intervening, p. 220.

19 Hillier & Leaman, ‘How is design possible?’

20 The terms ‘problem’ and ‘solution’ are used quite deliberately here. I am well aware that some theorists have doubted that designers ‘solve problems’ and even argue that this conception of design is likely to lead to an uncreative attitude and performance on the part of designers. The analysis of design set out in this chapter suggests that design, while a wholly creative act, is quite usefully thought of also as a problem solving act, not perhaps because it is an act of problem solving tout court, but because it includes one. The brief does pose a problem. A design does offer a solution. The key questions, and the ones with which this chapter is concerned are: what kind of problem? and: what kind of solution? and what kinds of knowledge are used in going from one to the other?

The reasoning art

27 Dickon Irwin, a student on the MSc in Advanced Architectural Studies at the Bartlett in 1989.
