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Chapter eight

Despite the merits of rectangular
dissections as models of smaller
plans, there is an increasing
proportion of ‘theoretical
possibilities’ for larger dissections
which nevertheless become rather
unlike the plans of buildings,

and hence begin to lose their
practical interest. Such dissections
consist, certainly, of rectangular
components corresponding

to rooms, packed together in
different configurations. But
these configurations are not at
all probable architecturally, in
ways which are hard to pinpoint
precisely, but are no less real

for that. It is something to do

with such facts as that real
buildings tend to have limited
depth, because of the needs of
daylighting and natural ventilation,
S0 that when large they become
organised into regular patterns of
wings and courts. Or that rooms
are set along relatively simple and
coherent circulations systems
consisting of a few branching
corridors which extend along the
buildings’ whole length. There
are many dissections which

are made up, by contrast, of a
deep maze like agglomeration

of overlapping rectangles, many
of them completely internal and
through which any linking pattern
of circulation routes would be
circuitous and confusing. If we
could capture properties like these
in explicit geometrical measures,
then we might be able to limit the
study of dissections, for example,
to a much reduced class of
arrangements which would all

be ‘building-like’ in some well
defined sense. Steadman, 1983

The deepest root of the

trouble lies elsewhere: a field of
possibilities open into infinity has
been mistaken for a closed realm
of things existing in themselves
Herman Weyl
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Endless corridors and infinite courts

No idea in the theory of architecture is more seductive than that architecture is an
ars combinatoria — a combinatorial art: the idea that the whole field of architectural
possibility might be made transparent by identifying a set of basic elements and a
set of rules for combining them so that the application of one to the other would
generate the architectural forms which exist, and open up possibilities that might
exist and be consistent with those that do. By showing architectural forms to be a
system of transformations in this way, the elements and rules would be held to be
a theory of architectural form — the system of invariants that underlie the variety to
be found in the real world. The best-known statement of this hope is that of William
Lethaby when he calls for ‘a true science of architecture, a sort of architectural
biology which shall investigate the unit cell and all possibilities of combination’."

At first sight, this seems promising. Most buildings seem to be made up from
a rather small list of spatial elements such as rooms, courts and corridors, which
vary in size and shape but which are usually found in fairly familiar arrangements:
corridors have rooms off them, courts have rooms around them, rooms may connect
only with these or may also connect directly to each other to form sequences, and so
on. Similarly, the aggregates of buildings we call villages, towns and cities seem to be
constructed from a similarly small and geometrically well-defined lexicon of streets,
alleys, squares, and so on. With such an encouraging start, we might hope with a little
mental effort to arrive at an enumeration of the combinatoric possibilities in the form
of a list of elements and the possible relationships they can enter into so that we can
build a reasoned picture of the passage from the simplest and smallest cases to the
largest and most complex.

Unfortunately, such optimism rarely survives the examination of real
cases. If, for example, we consider the cross-national and cross-temporal sample
of 177 building plans brought together in Martin Hellick's ‘Varieties of Human
Habitation',2 we may well feel inclined to confirm at a very broad level — and with
great geometric variation — the idea that there are certain recurrent spatial types
such as rooms, courts and corridors, but we also note the prodigious variations
of overall layout which seem to be consistent with each. The historical record
of actual buildings and how they have evolved suggests that most buildings are
morphologically unique, and it is far from obvious how any combinatorial approach
could reduce them to a list of types.

Even if we isolate the problem of spatial relations from that of shape and
size by, for example, analysing plans as graphs, then we still find cornucopian
variety rather than simple typology. For example, a recent study of over 500 English
vernacular houses built between 1843 and 1930 reveals exactly six pairs of duplicate
graphs, even though the sample was taken from a single country during a period
where some typological continuity could be expected.3 Plans seem to be individual,
often with family resemblances or common local configurations, but rarely
consistent enough or clear enough to suggest a simple division into types.

Theoretical investigations of architectural possibility have led to an even
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greater pessimism. For example, studies which have attempted to enumerate
architectural possibility, even within artificially constrained systems such as the
dissection of rectangles into patterns of room adjacencies,* have invariably shown
that at an early stage in the enumeration the number of possibilities quickly outstrips
the number of conceivable cases, and a combinatorial explosion of such violence
is encountered as to exclude any practical possibility of continuing from smaller
to larger systems. Thus Steadman concludes in his review of modern attempts at
the systematic enumeration of building plans that ‘...for values of n (the number of
cells in a rectangular “dissection”) much greater than 10, the extent of combinatorial
variety becomes so great that a complete enumeration is of little practical purpose;
and indeed that for values of n not much larger than this, enumeration itself
becomes a practical impossibility’.5

There are in fact strong a priori grounds for Steadman’s caution. Although
by circumscribing what we mean by a building in unlifelike ways, for example, by
dealing only with rectangular envelopes, or by standardising the size and shape
of spaces, one can place limits on combinatorial possibility to the point where
we can in principle count numbers of possible arrangements, however large, the
more constraints one places on the combinatoric system, the less we seem able
to account for the variety which actually exists. But if we relax these constraints,
it is far from obvious that there are any numerical limits at all on architectural
possibility. For example, if we require all cells to be the same size then no cell can
be adjacent to more than six others. But if we allow cells to vary in size and shape
as much as necessary, then we may construct a corridor so that arbitrarily many
cells are directly adjacent to it, or a court so that arbitrarily many cells are around it.
Endless corridors and infinite courts must surely lead us to abandon simple cellular
enumeration as a route to a combinatoric theory of spatial possibility in architecture.

P-complexes in a-complexes
There is in any case a further profound problem in the understanding of buildings
as cellular dissections or aggregations. An arrangement of adjacent cells, whether
arrived at by aggregation or subdivision, is not a building until a pattern of
permeability from one cell to the other is created within it. For example, figure 8.1a
shows a single adjacency complex, which we may call an a-complex, in which
figures 8.1b and 8.1c inscribe different permeability complexes, or p-complexes. For
clarity, the p-complexes of b and ¢ are also shown as graphs in 81d and e.
Evidently, the two will be spatially very different buildings, even though the a-
complexes are identical and each p-complex has exactly the same number of open
and closed partitions. Over and above the question then, of how many a-complexes
there are, we must therefore also ask how many p-complexes are possible within
a given a-complex. We then find a second combinatorial explosion within the first:
of possible p-complexes within a given a-complex. Although an a-complex whose
graph is a tree (see Chapter 1) can only have one single p-structure inscribed
within it (and then only if we disregard connections to the outside) as soon as this
constraint is relaxed we begin to find the second combinatorial explosion: that of
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the possible p-complexes within each a-complex.

Suppose, for example, that we start with a version of the 6x6 a-complex
shown in figure 8.1a, in which each cell is demarcated from its neighbour by a two-
thirds partition with a central doorway, as in figure 8.1f and g. Obviously, every time
we close — or subsequently open — a doorway we will change the spatial pattern
of the p-complex. The question is, how many ways are there of inscribing different
p-complexes in this a-complex by closing and opening doors? We may work it out
by simple combinatorial procedure. First we note that a regular n x m adjacency
complex will always have (m(n-1)+(n(m-1)) internal partitions between cells, giving
(6(6-1)+(6(6-1)) = 60 in this case. This means that the first time we select a door to
close we will be making a choice out of 60 possibilities. The second will be out of
59, so there are 609, or 3540 possibilities for the first two doors. However half of
these will be duplicates, since they differ only in the order in which the doorways
were opened, so we need to divide our total by the number of ways there are of
sequencing two events i.e. 60x59/1x2, or 1770. The third doorway will be chosen
out of 58 remaining possibilities, so there will be 60x59%58 or 205320 possible
combinations of three, but the number of duplicates of each will also increase to the
number of different ways there are of ordering three events, that is 1x2x3 (= 6), S0
the total of different combinations for three doorways is 60x59x58/1x2x3 or 34220.

The total number of combinations for n doorways, will then be 60x59%58...x
(60-n)/1 x 2x 3x..xn, or in general, n(n-1)(n-2)...(n-m)/m! In other words the
number of duplicates increases factorially rising from 1, while the number of total
possibilities is multiplied by one less each time. This means that as soon as m
reaches n/2, then the number begins to diminish by exactly the same number that
it previously expanded. The numbers in effect pass each other half way, so that
there are the maximum number of different ways of arranging 30 partitions in 60
possible locations, but this number diminishes to 1 by the time we are opening the
60th doorway, just as it was when we opened the first doorway. These calculations
reflect a simple intuitive fact, that once we have placed half the partitions, then what
we are really choosing from then on is which to leave open, a smaller number than
the partitions we have so far placed. When we have placed 59 partitions, there is
only one location in which we can place the 60th, and this is why if we carry out the
calculation at this point it will give a value of 1.

What exactly are the numbers we are talking about? The procedure we have
outlined can in fact be expressed more simply in a well-known combinatorial formula
which can be applied in any situation where we are assigning a given number of
entities to a given number of possible assignments. If the number of doorways is d,
and the number of partitions p, then the formula p!/d!(p-d)! will give us the number
of possibilities which we have just worked out. With p=60, the highest value that the
formula can yield will be when d is half the possible number, that is 60/2x30, and the
result of the calculation 60!/(30!(60 — 30)!) is 118,264,581,600,000,000 (a hundred and
eighteen thousand trillion). The second highest value, 114,449,595, 100,000,000, will be
when d is 29 or 31, the next, 103,719, 935,500,000,000, when d is 28 or 32, and so on,
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and the lowest, 1, when d is 0 or 60, and the second lowest, 60, when d is 1 or 59.
These kinds of numbers of possibilities, though quite modest by combinatoric
standards, are almost impossible to grasp. To give an intuitive idea of the scale

of possibilities we are dealing with in the modest complex, we might perhaps
compare our maximum number of possible p-graphs for this comparatively small
a-graph with another 18-digit number: the number of seconds believed to have
passed since the big bang (provided it occurred 15 billion years ago), that is about
441,504,000,000,000,000. This means that if a computer had begun at the moment of
the big bang to draw up all these possible configurations of doorways for this one
modest adjacency complex, then it would have had to work at an average of one
every four seconds to be finishing now. If we printed out the results on A4 sheets,
and set them side by side, they would reach from Earth to the nearest star and back,
or 141,255 times to the sun and back, or just short of a billion times round the world.

There are a number of ways of reducing these vast numbers. For example,
each p-complex will have as many duplicates as there are symmetries in the
system. We can therefore reduce all our totals by this factor. We may also decide
that we are only interested in those p-complexes which form a single building, that
is a complex in which each cell is accessible from all others without going outside
the building. The maximum number of doors that can be closed without necessarily
splitting the complex into two or more sub-complexes will always be (n-1)(m-1), or
25 in this case. No way is known of calculating how many of the p-complexes with
25 or less partitions will be single buildings, but, in any case, the realism of this
restriction is doubtful because we have not so far taken any account of permeability
to the exterior of the form, and in any case, a complex split into two is still a
building complex and may be found in reality.

More substantively, we might explore the effects on imposing Steadman'’s
‘light and air’ restrictions on the form. Here we find they are far less powerful than
we might think in restricting p-complexes. For example, we may approximate a form
in which each cell has direct access to light and air by making an internal courtyard
as in figure 8.1h give or take a little shifting of partitions to allow the inner corner
cells direct access to the courtyard. Combinatorially, this has the effect of reducing
the number of internal partitions by 4 to 56, and the maximum number that may be
closed without splitting the building by 1 to 24. The number of p-complexes that can
be inscribed within the a-complex is therefore still in the thousands of trillions.

We will find this is generally the case. The imposition of the requirement
that each cell should have direct access to outside light and air makes relatively
little impact on the number of p-complexes that are possible, the more so since
direct access to external light and air will also mean an extra possible permeability
in the system which we have not so far taken account of. It is clear that although
light and air are inevitably powerful factors in influencing the a-complex, they place
relatively little restriction on the possible p-complexes. We might even venture a
generalisation. ‘Bodily’ factors like light and air have their effect on buildings by
influencing the a-complex, but do not affect the p-complex which is determined,
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as we have seen in previous chapters, and as we will see more generally below,
largely by the psycho-social factors which govern spatial configuration.

If we see buildings, as we must, as both physical and spatial forms, that is
as a-complexes with p-complexes inscribed within them, then we must conclude
that buildings as a combinatorial system take the form of one combinatorial
explosion within another with neither being usefully countable except under
the imposition of highly artificial constraints. Is the combinatoric question about
architecture then misconceived? If it is, how then should we account for the fact
that there do seem to be rather few basic ways of ordering space in buildings. What
we must do, | suggest, is rephrase the question. Architecture is not a combinatorial
system tout court any more than a language is a combinatorial system made up
of words and rules of combination. In language, most — almost all in combinatorial
terms — of the grammatically correct sequences of words of a language have no
meaning, and are not in that sense legitimate sentences in the language. It is how
(and why) these combinatoric possibilities are restricted that is the structure of the
language. So with architecture. Most combinatorial possibilities are not buildings.
The question is why not? How is the combinatorial field restricted and structured so
as to give rise to the forms that exist and others that might legitimately exist? It is
this that will be the theory of architectural form - the laws that restrict and structure
the field of possibility, not the combinatorial laws of possibility themselves.

How then should we seek to understand these restrictions that structure
the field of architectural possibility? There are a number of important clues. First,
as the results reported in Chapter 4-8 show, the configurational properties of
space, that is of the p-complex, are the most powerful links between the forms of
built environments and how they function. It is a reasonable conjecture from these
results, and their generality, that, in the evolution of the forms of buildings, factors
affected the p-complex may dominate those affecting the a-complex. Bodily factors
affecting the a-complex may create certain limits within which p-complexes evolve,
but buildings are eventually structured by factors which affect the evolution of the
p-complex, because it is the p-complex that relates to the functional differences
between kinds of buildings.

Second, the properties of p-complexes that influence and are influenced by
function tend to be global, or at least globally related, configurational properties, such
as integration, that is, properties which reflect the relations of each space to many,
even all, others. For example, the average quantity of movement along a particular line
is determined not so much by the local properties of that space through which the
line passes considered as an element in isolation, but by how that line is positioned
in relation to the global pattern of space created by the street system of which it is a
part (see Chapter 4). In general we may say that configuration takes priority over the
intrinsic properties of the spatial element in relating form to function.

These conclusions may be drawn as generalisations from the study of
a range of different types of building and settlement. However, there is a further,
more general, conclusion that may be drawn from these studies which has a direct
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and powerful bearing on our present concerns. If we consider the range of cases
studied as instances of real p-complexes within the total realm of the possible, we
find that as complexes become larger they occupy a smaller and smaller part of the
total range of possibility from the point of view of the total spatial integration of the
complex, crowding more and more at the integrating end of possibility as complexes
grow. For example, the recent doctoral study of over 500 English houses from the
mid ninteenth to early twentieth century already referred to6 with a mean size of 23.6
cells, has found most of the houses lie within the most integrating 30 per cent of the
range of possibility and all within 50 per cent. Analysis of large numbers of buildings
over a number of years suggest that at around 150 cells, virtually all buildings will be
within the shallowest 20 per cent of the range of possibility, and most much below
it, at 300 cells, nearly all will be within the bottom 10 per cent, and at around 500
most will be within the bottom 5 per cent. It is clear that as buildings grow, they use
less and less of the range of possible p-complexes. The same is true of axial maps
of settlements.”

In short, the most significant properties of p-complexes seem to be related
to the degree and distribution of spatial integration — that is, the topological depth
of each space from all others — in the complex. It follows that if we can understand
theoretically how these characteristic properties of integration are created, then we
will have made some significant progress towards understanding how architectural
possibility becomes architectural actuality. How then does integration arise in a p-
complex in different degrees and with different distributions? The simple fact is that
the properties of any p-complex, however large, are constructed only by way of a
large number of localised physical decisions: the placing of partitions, the opening
of doors, the alignment of boundaries, and so on. What we need to understand in
the first instance is how the global configurational properties of p-complexes space
are affected by these various types of local physical change. It will turn out that
the critical matter is that every local physical move in architecture has well-defined
global spatial effects in the p-complex, including effects on the pattern and quantity
of integration. It is the systematic nature of these effects by which local physical
moves lead to global spatial effects that are the key to how combinatorial possibility
in architecture is restricted to the architecturally probable, since these are in effect
the laws by which the pattern and degree of integration in a complex is constructed.

Once we understand the systematic nature of these laws, we will be led to
doubt the usefulness, and even the validity of the combinatorial theory of architecture
in two quite fundamental ways. First, we will doubt the usefulness of the idea
of spatial ‘elements’, because each apparent spatial element acquires its most
significant properties from its configurational relations rather than from its intrinsic
properties. Even apparently intrinsic properties such as size, shape and degree of
boundedness will be shown to be fundamentally configurational properties with global
implications for the p-complex as a whole. In effect, we will find that configuration
is dominant over the element to the point where we must conclude that the idea of
an element is more misleading than it is useful.2 Spatial elements, we will show, are
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properly seen not as free-standing ‘elements’, with intrinsic properties, waiting to be
brought into combination with others to create complexes of such properties, but
as local spatial strategies to create global configurational effects according to well-
defined laws by which local moves induce global changes in spatial configurations.
The second source of doubt will follow from the first: it is not combinatorics
per se which create complexes but the local to global laws which restrict
combinatorics from the vast field of architectural possibility to certain well-
defined pathways of architectural probability. The theory we are seeking lies not
in understanding either the theoretically possible or the real in isolation, but in
understanding how the theoretically possible becomes the real. We will suggest
that the passage from possibility to actuality is governed by laws of a very specific
kind, namely laws which govern the relation between spatial configuration and what
| will call ‘generic function’. Generic function refers not to the different activities that
people carry out in buildings or the different functional programmes that building
of different kinds accommodate, but to aspects of human occupancy of buildings
that are prior to any of these: that to occupy space means to be aware of the
relationships of space to others, that to occupy a building means to move about in
it, and to move about in a building depends on being able to retain an intelligible
picture of it. Intelligibility and functionality defined as formal properties of spatial
complexes are the key ‘generic functions’, and as such the key structures which
restrict the field of combinatorial possibility and give rise to the architecturally real.

The construction of integration

Let us begin with figure 8.1f, a 6x6 half-partitioned a-complex with an isomorphic
p-complex inscribed within it, that is, all partitions are permeable. What we are
interested in is how the key global configurational property of integration is affected
by closing and opening the central sections of the partitions. To make the process
as transparent as possible, instead of using i-values, we will use the total depth
counts from each cell from which the i-value is calculated. Half-partitions may

be turned into full partitions by adding ‘bars’, in which case the cells either side
become separated from each other, without direct connection. Half-partitions

can also be eliminated, in which case the two cells become a single space. If all
partitions to a cell are barred, then that cell becomes a block in the system.

Now as we already know from the analysis of shape in Chapter 3, the p-
complex of figure 8.1f will already have a distribution of i-values, which we can show
in figure 8.2a as total depth values, that is, the total depth of each cell from all the
others, with the sum, 5040, shown below the figure. It is important for our analysis
that we understand exactly how these differences arise, since all is not quite as it
seems. We will, it turns out, need to make a distinction between the shape of the
complex and the boundary of the complex. At first sight, it is clear that the differences
between the cells are due to the relation of the cell to the boundary of the complex.
Corner cells have most depth, centre edge rather less, then less towards the centre.
If we change the shape of the aggregate, say into a 12 x 3 rectangle, as in figure
8.2b then all the individual cell total depths will change, as will the total depth for the
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Figure 8.2 aggregate as a whole (6330) reflecting the changing relations of cells to the boundary.
However, if we eliminate the boundary by wrapping either of the two aggregates
first round a cylinder so that left joined to right, and then into a torus so that top
joined to bottom, then the total depths for all cells in each aggregate would be the
same, since starting from each and counting outwards until we have covered all the
cells, we will never encounter a boundary and so will find the same pattern of depth
from each cell. The total depths of the cells would in fact be equal to the minimum
depth of the cells in the bounded aggregate, that is the group of four at the centre
of the square form, whose value is 108, and the pair at the centre of the rectangular
form, whose depth is 132. However, this implies that in spite of the removal of the
boundaries, these differences between the square and rectangular shapes still
survive. These differences in total depth values are it seems the product of the
shape of the aggregate but not of its boundary.

This can be demonstrated by a simple thought experiment. Take a cellular
aggregate, say the six by six square and wrap it onto a torus, thus removing the
boundary. Select any ‘root’ cell and construct a justified graph — that is a graph in
which levels of depth of nodes from an initial node are aligned above a selected root
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node in a series of layers representing depth — in which all cells sharing a doorway
with the root are the first layer, all those sharing a doorway to a first layer cell are the
second layer, and so on. When the graph reaches any cell adjacent to the boundary
in the original bounded aggregate in the plane, any next, deeper cell with which a cell
in the justified graph shares a doorway will already be in another branch of the graph.
Thus the justified graph finds the limits of the original shape of the aggregate, even
though the boundary has been eliminated by wrapping on the torus.

It follows that the uniform depth value that will be found in any shape
on a torus will reflect the shape and will be equal to the minimum depth of the
original aggregate in the plane. This will be 108 for the square form and 132 for the
rectangle. A depth of 108 per cell (three times the number of cells in the complex)
can therefore be said to be the depth due to the square form having a square shape
and 132 the depth due to the rectangular form having a rectangular shape. When
dealing with a standard shape therefore we may, if we wish, eliminate this amount
of depth from each cell, and deal only with the depth due to the boundary. These
remaining depths are shown for the 6 x 6 square and the 12x3 rectangle in figures
8.2c and d. These boundary related depths are due to the fact that the aggregate
boundary is barred from its surrounding region. If we were to open all cells to the
outside by opening the boundary, and treating the outside region as an element in
the system to be included in depth calculations, then clearly the depth values would
all change, particularly if we counted the outer region as a single space, in which
case cells close to the boundary would have less depth than cells at the centre.
This alerts us to the fact that in considering the barring — that is the conversion of
half partitions into full partitions — in a cellular aggregate, the boundary is itself an
initial partitioning, and like any other partitioning it has effects on the distribution of

Figure 8.3
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depth in the aggregate. Bearing this in mind, we may now return to the plane, and
hold shape and boundary steady by considering only the square form, in order to
explore the depth effects of adding further barrings within the aggregate.
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It is obvious that further internal barring will increase the total depth for at least
some cells, since it will have the effect of making certain trips from cell to cell
longer. It is perhaps less obvious that the quantity, as well as the distribution, of
extra depth created by bars will vary with the location of the bar in relation to the
boundary. For example, if we place a bar in the leftmost horizontal location in the
top line of cells in figure 8.1, as in figure 8.3a, the total depth in the aggregate will be
increased from 5040 to 5060, an additional 20 steps of depth, while if we place the
bar one to the right, as in figure 8.3b, then the increase in total depth will be from
5040 to 5072, an additional 32 steps.

How does this happen? First, all the ‘depth gain’ in figures 8.3a and b is on
the line in which the bar is located. On reflection, this must be the case. Depth gain
happens when a shortest route from one cell to another requires a detour to an
adjacent line. Evidently, any other destination on that adjacent line or on any other line
will not require any modification to the shortest path, unless that line is itself barred.
Depth gain for single bar must then be confined to the line on which the bar occurs.
But placing the bar at different points on the line changes the pattern of depth gain for
the cells along the line. Each cell gains depth equal to twice the number of cells from
which it is linearly barred, because each trip from a cell to such cells requires a two-
cell detour via an adjacent line. Evidently this will be two way, and the sum of depths
on the two sides of a single bar will thus always be the same. It follows that the
depth gain values of individual cells will become more similar to each other as the bar
moves from edge to centre, becoming identical when the bar is central. It also follows
that the total depth gain from a bar will be maximised when the bar is at or near the
centre of the line, and will be minimised at the edge. This is illustrated for edge to
centre bars on a 6-cell line in figure 8.4 a, b ¢, and d.

The fact that an edge location for a partition minimises depth gain but
maximises the differences between cells, while a central location maximises
depth gain but minimises differences, is a highly significant property. It means that
decisions about where to place a bar, or block a doorway, have implications for
the system beyond the immediate region of the bar. If we define a ‘local physical
decision’ as a decision about a particular bar within a system, and a ‘global
spatial effect’ as the outcome of that decision for the system as a whole, it is clear
that local decisions do have quite systematic global effects. In these cases, the
systematic effects follow what we might call the ‘principle of centrality’.

It might be useful to think of such ‘local-to-global’ effects as ‘design
principles’, that is, as rules from which we can forecast the global effect of a local
barring decision by recognising what kind of barring we are making. In this case
the design principles are two: that the depth gain from a bar is minimised when the
bar is placed at the edge and maximised when placed at the centre; and that edge
bars make for greater depth gain differences between some cells and others, while
central partitions equalise depth gain.

Similar principles govern local-to-global effects when we add a second
bar in different locations as in figure 8.4e-j. Depth gains for each cell are equal to
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Figure 8.4
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twice the number of cells on the far side of the nearest bar. For each cell, bars
other than the nearest on either side do not affect depth since once a detour to
an adjacent line has been made, then it can be continued without further detour
to reach other cells on the original line, provided of course there is no bar on the
adjacent line (see below). Figure 8.4k-p then shows that depth effects of three to
five bars are governed in the same way, ending with the fully barred line in which
each cell gains depth equal to twice the number of other cells in the line. These
examples illustrate a second principle: that once a line is barred, then depth gain
from the next bar will be minimised by placing it within the shortest remaining line
of cells, and maximised by placing it in the longest. We can call this the ‘principle
of extension’: barring longer lines creates more depth gain than barring shorter
lines. Within each line, of course, the principle of centrality continues to hold, and
the distribution of depth gains in the various cases in figure 8.4 follow these both
in the principle of extension and the principle of centrality. Thus taking figures 8.4g
and j, each has a bar in the second position in from the left, but g then has its
second bar immediately adjacent in the third position in from the left, while j has its
second bar two positions away, equidistant from the right boundary of the complex.
This is why g has less depth gain than j in spite of its second bar being in a more
central location in the complex as a whole, because, given the first bar, what counts
is the position of the next bar in the longest remaining lines, and in j the bar is
placed centrally on that line. This shows an important implication of the principles
of centrality and extension: when applied together to maximise depth gain, they
generate an even distribution of bars, in which each bar is as far as possible from
all others; while if applied to minimise depth gain, bars becomes clustered as close
as possible to each other along lines.

Suppose now that instead of locating the second bar on the same line
we locate it on an adjacent line. Figure 8.6a-j shows the sequence of possibilities
for the location of the second bar, omitting, for the time being (but see below) the
case where we join bars contiguously in a line. When barred lines are adjacent,
then for each line, the depth gain is greater than for each bar alone, but the effect
disappears when the two barred lines are not adjacent, as in the final two cases,
k and I. The effect is identical if the two bars are on adjacent lines away from the
edge. These effects are best accounted for by seeing each barring of two adjacent
lines as dividing the pair of lines into an ‘inner zone', where there is only one bar to
circumvent in each direction, and two ‘outer zones’ from which two bars must be
circumvented to go from one to the other. The conjoint effect is entirely due to the
outer zones, in that to go from one outer zone to the other, there is a further bar to
circumvent once a detour to the adjacent line is taken to circumvent the first bar.
Depth gain for a cell is therefore equal to twice the number of cells that lie beyond
bars on either line. Thus the value of twelve in the leftmost example in the top row
is the product of twice the five cells on the far side of the bar in the top row, plus
twice the single cell on the far side once you move from the top to the second row.
Similarly, the total depth of two for each of the cells to the right of the bar in the top
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Figure 8.5
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row reflects the fact that only one cell is on the far side of the bar in the top row,
and none are in the second row. This calculation of depth gain will work for any
number of rows of cells, providing that the bars are non-contiguous. Non-contiguity
of bars means that there is always a ‘way through’ for a shortest path.

If we then add a third (non-contiguous) bar on a third line, then there are two
alternative possibilities. If the three bars are in echelon, as in figure 8.56m, then ‘outer
zone’ cells on all three lines will gain depth additively equal to twice the number of
cells in all the opposite outer zones. This is because when the bars are in echelon,
then every detour to an adjacent barred line means that the bar on that line is still
beyond where you are on that line, so a further detour is necessary. Inner zone cells
gain only twice the number of cells in the outer zones of their own lines.

If the bars are not in echelon, as in figure 8.6n, then the gain will only be as
from a pair of adjacent lines since the bar on the central line must be so placed as
to allow a ‘way through'. The central line will, however, gain depth from its relation
to both adjacent lines, and can be counted first in a pair with one, then with the
other. If four non-contiguous bars are on four adjacent lines, then the depth gain
is according to whether trios of lines are in echelon or not, and so on. If there are
two or more bars on the same line, then the calculations will be according to the
formula already outlined. If one of the adjacent lines is an edge line, then likewise,
this can be calculated according to the formula already explained.

These are the possible non-contiguous barrings on the same general
alignment (i.e in this case all are horizontal). What about the addition of a second
(or more) non-contiguous bar on the orthogonal alignment, as in figure 8.6a7? We
already know the effect of the second bar on its own line. Does it have an effect
on the line of the first bar? The answer is that is does not and cannot, provided it
is non-contiguous, because while it is non-contiguous there will always be a ‘way
through’ for shortest paths from cells on other alignments. Depth gain resulting from
a bar on a certain alignment can never be increased by a bar orthogonal to that
alignment, while the bars are non-contiguous.

What then are the effects of contiguous bars? There are two kinds: linearly
contiguous bars, in which two or more partitions form a single continuous line;
and orthogonally contiguous bars, in which two or more bars form a right-angle
connection. Within each we can distinguish contiguous bars which link with another
bar at one end, and those which link at both ends. First let us look at the right
angle, or L-shaped, case for the single connected bar. Figures 8.6b-e show the
depth gain pattern for the simplest case, a two bar L-shape, located at four different
positions. The first thing we note is that in all cases the depth gains on ‘either side’
of the L are in total equal, though very differently distributed. In 8.6b, where the L
faces into the top left corner, the depth gain forms a very high peak within the L,
which is made up of two elements: first, the depth gains along each of the lines of
cells partitioned by the bar, of the kind we have seen already; and second by the
conjoint effect of the two bars forming the L, in creating a ‘shadow’ of cells, each
with a depth gain of 2, which mirror the L shape on the outside diagonal to it. This
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is a phenomenon we have not see before, since with non-contiguous bars all depth
gains can be accounted for by the effects of individual bars.
As the L-shaped bar is moved from top left towards the bottom right, while
maintaining its orientation, as in 8.6¢,d and e, we find that although the individual
effects of each of the constituent bars making up the L remains consistent with the
effects so far noted, the conjoint ‘shadow’ effect diminishes, because there is less
and less scope for the ‘shadow’ as the L moves towards the bottom right and the L
shape follows, rather than inverts, the L formed by the corner of the outer boundary.
We see then that in this case the effect of moving the L from the centre towards
the corner will be to diminish depth gain, as expected, as the L moves towards a
corner from which the L faces outwards, but to increase it as the L moves towards

fkﬁ¥¥¥- -+ +
-+ -+ o+ T
- -+ o+
-+ -+ o+
-+ - -+ + + o+ -
kjitﬂﬁ"++}++-3tﬂ ++F+ 4+ 1.+ +
-42ﬂ+ﬁ;1t1ijj? SR e ot TR | S A
e it e o | e e Bl S e a [SR e o -
T e e S S S S | S N e e e
-tﬂttt~++ﬁﬁﬁ;3tﬁtt+-+++ﬁﬁ-
-++{++~++++}--++ ++ 1+ + T+t
e o e o o | S o S O N N SOTRS RETRA | KA BNA S
3tﬁ1$t"++++ﬁ-{{{zf b4+ -
-++Szt"ﬁﬁﬁilgytttﬂ+-+++jﬁ-
Bt T | e S e e e

d. depth gain total = 80

e. depth gain total = 44

i. depth gain total = 96

1
j- depth gain total = 84

The laws of the field

Space is the machine | Bill Hillier

Space Syntax




232

Is architecture an ars combinatoria?

a corner where the L faces inwards towards the corner.

At first sight, this seems to contradict the principle that edge partitions
cause less depth gain and central partitions more. In fact, what we have is a
stronger instance of the effect noted in figure 8.4a, where the most peripherally
located partition created the least depth gain overall but the greatest depth gain
for the single cell. The depth gain was focused, as it were, in a single cell. In 8.6b,
the depth gain is even more powerfully focussed in a single cell, both because
it focusses both the gain from the two bars making up the L, but also from the
‘shadow’. In other words what counts as the ‘other side’ of the partition is expanded
by forming contiguous partition into an ‘enclosure’. Enclosure, we might say, means
‘enclosure with respect to what'. The greater the area ‘with respect to which' an
‘inside’ region is enclosed, then the greater the enclosure effect by the focussing of
depth gain. This is, in effect, a generalisation of the ‘principle of extension’ by which
greater overall depth gain arises from the greater scope of the effect of the partition.
In figure 8.6b, this extension on the ‘other side’ of the enclosure includes the area
between the two alignments affected by the partition, and this increases
its extension.

This effect will increase if we add new contiguous bars to the original
L-shape. Figure 8.6f for example shows the depth gain pattern for an L-shape
whose arms are twice as long as in the previous figure. The depth gain pattern is
similar to that for single L-shapes, but even more extreme. Figures 8.6g-j break this
down by taking each of the cells on the open side of the barring and showing the
shadow due to that cell. This is calculated by taking each open side cell in turn and
calculating the detour value for each shadow cell. The shadow shown in figure 8.6f
evidently, is the sum of these sub-shadows of figure 8.6g-k, plus those of the four
cells on the ‘open’ side of the L (which are not shown).

Next consider the linear contiguity of bars. Figure 8.7a-g shows a series
of cases in which bars are first extended linearly to double unit length and moved
across from edge to centre, and then triple unit length. Depth gains are larger even
than for L-shaped bars, and the rate of gain increases, not only as the line of bars
is moved from edge to centre, but also, even more dramatically, as the number of
bars formed into a continuous line is increased. For example, the depth gain from a
single edge bar is 20, rising to 36 as the bar moves to the centre, but if we expand
the bar linearly to a pair, the gain is 180 and if we add a third then the gain is 504.
This reflects a simple fact that to detour round one bar - say an edge bar — to a cell
that was initially adjacent requires a 2 cell detour. However, if a second bar is added
in ling, then the detour will be 5 cells, and if a third is added, the detour will be 7
cells, and so on. The contiguous line of bars is the most effective way of increasing
depth in the system, first because it is the most economical way of constructing an
object requiring the longest detour from cells on either side to the other and second
because the longer the bar the more it has the effect of increasing the number of
cells on either side of it, that is, it has the effect of barring the whole aggregate.
Evidently, this ‘whole object barring’ will have more depth gain to the degree that the
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Figure 8.7
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object is barred into two equal numbers of cells. Thus in figure 8.7g the long central
bar comes as close as possible to dividing the whole object into two equal parts.
Figure 8.7h-j then demonstrates the effect of linearity on three contiguous bars. In
all three, at least two bars are located in the second position from the edge. In 8.7h,
the bars are formed into a U-shape giving a total depth gain of 124, 28 more than
would be gained by the lines independently if they were non-contiguous, and with
a very strong peak inside the enclosure. In figure 8.7i, which is a three-bar L-shape,
the total depth gain is 200, 104 more than the lines would have independently, and
with a less strong peak within the enclosure. In 8.7j, the total gain is 336, 240 more
than for the lines independently, and with a much more even spread of values,
without any single peak. These differences thus arise simply from the shape formed
by the three contiguous lines. The principle is that the more we coil up bars, and
create a concentrated peak of depth gain within the coiled up bars, then the less
the overall depth gain. Depth gain in the whole system is maximised when bars are
maximally uncoiled and construct a maximally linear ‘island’ of bars. Since the U-
shape of 8.7h approximates a ‘room’, we can say that the most integration efficient
way of arranging three contiguous bars is to form them into ‘rooms’. Such ‘rooms’
will not only have the least depth gain effect on the spatial complex, but will also
maximise the difference between the depth-gain of a single space (i.e. the ‘room’)
and that in the other spaces of the system. This is the phenomenon we first noted
for edge partitions in figure 8.4.

Now if we reflect on figure 8.7, we can see that all the depth gain apart from
that due to the individual bars is to the central bar and to the fact that it connects two
ways to form the line of three. This means that if we start from a situation in which we
have the two outer bars, then the addition of the single bar connecting the two outer
bars into a line in itself adds a depth gain of 272. This double connecting of bars to
form a line is the most powerful possible move in creating additional depth, not least
because it must necessarily have the effect of eliminating a ring from the system.

We may summarise all these effects in terms of four broad principles
governing the depth gain effects of bars: the principle of centrality. more centrally
placed bars create more depth gain than peripherally placed bars; the principle
of extension: the more extended the system by which we define centrality (i.e.
the length of lines orthogonal to the bar) then the greater the depth gain from the
bar; the principle of contiguity: contiguous bars create more depth gain than non-
contiguous bars or blocks; and the principle of linearity: linearly arranged contiguous
bars create more depth gain than coiled or partially coiled bars. All four principles
govern local-to-global effects in that each individual local physical move has quite
specific global effects on the spatial configuration as a whole. At the same time
these effects are dependent on the number and disposition of bars and blocks
that already exist in the system. The four principles allow us to keep track of the
complex inter-relationships between what is already in the system and the global
consequences of new moves. We may therefore expect to be able to construct
processes in which different sequences of barring moves will give rise to different
global configurational properties.
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Elementary objects as configurational strategies
We will see shortly that this is the case. But first we must show that the same
principles that govern the opening and closing of partitions, also govern all other
types of spatial moves which affect integration such as the creating of corridors,
courts or wells, and even changes in the shape of the envelope of the complex. Let
us first consider wells. Wells are zones within a complex which are inaccessible from
the complex and therefore not part of the spatial structure of the complex. They act in
effect as blocks in the system of permeability. We will see that the effects of blocks of
different shapes and in different locations have configurational effects on the whole
system which follow exactly the same principles as those for bars.

First, let us conceptualise blocks in terms of the barring system we have
so far discussed. A block is an arrangement of bars we have so far disallowed,

Figure 8.8
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enclosure, so that one or more spaces is completely separated from the rest

of the spatial system, and effectively eliminated from it. A block is in effect the
elimination of one or more cells from the spatial system. Three possible cases of
single cell elimination are shown in figure 8.8a, b and ¢ with the resulting depth
gains. Because the block bars lines in two directions all that happens is that the
pattern of depth gain resulting from the blocks follows the edge to centre rules, as
for bars. There will not, for example, also be ‘shadow’ effects, as with L-shaped
bars, because the relation between the enclosed space and those on the other side
of the L-shape, which created the ‘shadow’ has been eliminated by the complete
closing off of the block. We must note of course that the depth gains figures

are less than for a simple barring, but this is simply because one cell has been
eliminated from the system. We may if we wish correct this by substituting i-values
for depth gains, since these adjust depth according to the total number of cells in
the system, but at this stage it is simpler to simply record the depth gains and note
the effect of the elimination of a cell.

Figure 8.8d-g then shows four possible shapes and locations for blocks
of four cells, together with the depth gains for each cell and the total depth gain
indicated bottom right of the complex. As we would expect from the study of bars,
the compact 2x2 block has much less depth gain than either of the linear 4x1 forms,
and the linear forms have higher depth gains in central locations than peripheral
locations (as would compact blocks). We may note that, as we may infer from bars,
the depth gain effects from changes of shape are much greater than those from
changes of location. But also of course the locational effects of high depth gain
shapes - that is linear shapes — are much greater than the locational effects of low
depth gain — or compact — shapes.

It is clear that in this way we can calculate the depth gain effect of any
internal block of any shape and that it will always follow the general principles we
have established for bars. However, there is another important consequence of this,
namely that we can also make parallel calculation for blocks placed at the edge of
the complex. The reason this is important is that such peripherally located blocks are
not ‘wells’ which by definition are internal to the complex, but changes in the shape
of the envelope of the complex. It is clear from this that we may treat changes in the
external shape of the complex in exactly the same way as interior ‘holes’ within the
complex. Since we have already shown that such ‘holes’ are special cases of barring,
then there is a remarkable unification here. From the point of view of the construction
of integration — which we already know to be the chief spatial correlate of function
within the complex — it seems that partitions within the complex are the same kind
of thing as changes to the shape of the complex, whether these are internal, as with
wells, or external, as with changes in the envelope shape.

We will now show that the creation of larger spaces within a complex such
as courts and corridors can also be brought within the scope of this synthesis and
be shown to be the same kind of phenomenon and subject to the same laws. First,
we must conceptualise what we mean by the creation of larger spaces in terms of
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Figure 8.9

+++++ +¢+++
S o B AL o | C IR AN
o o BT | S o
s e el e i | o S S
+++++ +++++

a. depth loss total = -808 b. depth loss total = -622

+++++ +++++
e e B | T
ek + o+ F ek + o+
+ -I I_ + + _—41-| I_—l9-|_—12-|_—11-|_—10
+ + + + + _—39-I_—47-|_—18_|_—11-|_—10+—9_

c. depth loss total = -1174 d. depth loss total = -1008

a barring process. Larger open spaces in the complex are created by eliminating
the existing two-thirds partitions instead of completing the partition, and in effect
turn two neighbouring spaces into what would then be identified as a single space.
Figure 8.9a-d does this so as to substitute open spaces for the blocks shown in the
previous cases, and gives the consequent depth loss (that is, integration gain) for
each cell. The depth loss for the larger space is calculated by substituting the new
value for the whole space for each of the values in the original form and adding
them together. Total depth loss for each form is shown below the figure.

The first point to be noted is that the depth loss for a shape of a given size
is a constant, regardless of location in the configuration. This is because from the
point of view of the large space, the effect of substituting a single space for two or
more spaces is to change the relations of those spaces with each other - that is
to eliminate a certain number of steps of depth — but not to change the relations of
those spaces to the larger system. However, although the depth loss for the larger
space is constant, its effects on the rest of the system are not. In fact they vary in
exactly the opposite way to the blocks. Whereas peripherally located blocks add
less depth to the system than centrally placed blocks, peripherally placed open
spaces eliminate less depth than centrally placed spaces; and a linear arrangement
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of cells into a single space has a greater depth loss (more integrating) effect than
a square arrangement, and this effect is greater when the linear space is placed
centrally than when it is placed peripherally.

The first four complexes of figure 8.10 show the same cases but marking
each space with its total depth from the rest of the system rather than its depth
loss. Here what we note is that identical larger spaces in different locations will
have different total depths reflecting their location in the complex. It is only the
depth loss from making two or more spaces into one that is identical, not the
depth values of the location of these spaces in the complex. Thus we can see that
a centrally placed open ‘square’ is more integrating (i.e. has less total depth) in
itself than a peripherally placed one, and that a linear form will be more integrating
than a compact form. These effects are of course exactly the inverse of those of
blocks, and we may therefore say that they are governed by the same laws. In the
two final examples in figure 8.10 the four open cells are arranged as two two-cell
spaces rather than a single four-cell space and show another inverse principle: that
contiguously joined spaces will always create more integration than a comparable
number of discrete spaces.
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Thus the four principles of centrality, extension, contiguity and linearity which
governed the depth gain effects of bars and blocks also govern the depth effects on
the global system of creating larger open spaces, though in the contrary direction.
More centrality for larger spaces means more integration, more extended lines from
larger spaces means more integration, more continuity of larger spaces means
more integration and more linearity of larger spaces means more integration. A
useful bonus is that in the case of larger spaces we can actually see that the effects
are not within the spaces themselves but are to do with the effect of the spaces on
the remainder of the system.

We can now draw a significant conclusion. Not only partitions, internal
walls and external shape changes but also rooms and larger linear or compact
open spaces such as corridors and courts have all been shown to be describable
in the same formal terms and therefore to be, in a useful sense, the same kind of
thing. This has the important implication that we will always be able to calculate the
effects of any spatial move in any system in a consistent way, and indeed to be able
to predict its general effects from knowledge of principle. This allows us to move
from a static analysis of the global implications of local changes in system to the
study of dynamic spatial processes in which each local move seeks, for example,
to maximise or minimise one or other type of outcome. When we do this we will
find out that both the local configurations we call elements and the global patterns
of the spatial complex as a whole are best seen as emergent phenomena from the
consistent application of certain types of spatial move. We will call these dynamic
experiments ‘barring processes'.

Barring processes
For example, we may explore barring processes which operate in a consistent
way, say to maximise or minimise depth gain, and see what kind of cellular
configurations result. In making these experimental simulations, it is clear that we
are not imagining that we are simulating a process of building that could ever have
occurred. It is unrealistic to imagine that a builder would know in advance the depth
gain consequences of different types of barring. However, it is entirely possible that
within a building tradition, a series of experiments in creating cellular arrangements
would lead to a form of learning of exactly the kind we are interested in: that certain
types of local move will have global consequences for the pattern as a whole which
are either functionally beneficial or not. We may then imagine that our experiments
are concerned not with simulating a one-off process of building a particular building,
but of trying to capture the evolutionary logic of a trial-and-error process of gradually
learning the global consequences of different types of local barring moves. In this
sense, our experiments are about how design principles might be learnt rather than
how particular buildings might be built.

First some definitions. We define a barring move as the placing of a single
bar whose only known (or, on the evolutionary scale, discovered) consequence is
its depth gain for the system as a whole. A barring manoeuvre is then a planned
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series of two or more moves where the depth gain effect of the whole series is
taken into account, rather than simply the individual moves. Manoeuvres may be
2-deep, 3-deep, and so on according to the number of moves they contain. Moves
are by definition 1-deep manoeuvres. A move may be made in the knowledge that
one move eliminates more of a certain type of possibility than another. For example,
a bar placed away from the boundary eliminates two possible locations for non-
contiguous bars, whereas a bar contiguous with the boundary eliminates only one.
This is important, since the location of one bar will often affect where the next

can go, and it will turn out that in some processes in the 6 x 6 complex non-edge
bars exhaust non-contiguous bars within about fourteen steps, whereas with edge
bars it is twenty, and this makes a significant difference to a process. We allow
this knowledge within moves, because it can be seen immediately and locally as a
consequence of the move, provided the principles are understood.

Both moves and manoeuvres thus have foresight about depth gain, but only
manoeuvres have foresight about future moves. A random barring process is one in
which barring moves are made independently of each other and without regard for
depth gain or any other consequence. We might say then that in describing moves
and manoeuvres we are describing the degree to which a process is governed by
forethought. At the opposite extreme from the random process, it follows, there will
be the process governed by an n-deep manoeuvre, where n is the number of bar
locations available, meaning that the whole set of bars is thought out in advance,

Figure 8.11
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and each takes into account the known future positions of all others.

Let us now consider different types of barring process. Figure 8.11a-d
sets out a barring process of 24 bars, numbered in order of placement in which
each move is designed to maximise depth gain. We choose 24 because 25 is the
maximum that can be placed without dividing the aggregate into discontinuous
zones (that is, in effect, into two buildings), and one less means that one ‘ring" will
remain in the circulation system (that is, one cycle in its graph), so that if there is a
process which maximises some property of this ring then we might find out what it
is. Bars are numbered in order of placing, and we will now review this ordering.

To maximise depth gain, our first bar — bar 1 — must be placed exactly to
bisect a line of cells. It does not matter which we select, since the effect of all such
bisections will be equivalent. But bar 2 must take into account the location of the first,
since depth gain will be maximal only if it is linearly contiguous with it. The same
principle governs the location of the bars 3, 4 and 5. After five moves therefore we
must have a long central bar reaching to one edge, and we have in fact created the
form shown in 8.7g, which is the most depth gain efficient way of using fewest bars
to ‘nearly divide' the aggregate into two. Thus we have arrived at a significant global
outcome for the object as a whole, even though we have at each stage only followed
a purely local rule. Although individual moves had a certain degree of choice, the
configurational outcome as a whole, we can see, was quite deterministic.

Since the next move cannot continue on the central bar line without cutting
the aggregate into two, we must look around for the next depth maximising move.
We know we must bisect the longest sequence of cells, and if possible our bar
must be contiguous with bars already placed. To identify the longest sequence,
we must recognise that the barring so far has effectively changed the shape of
the complex. We could, for example, cut the complex down the line of the central
partition and treat it almost as two complexes. As a result, there is now a longest
sequence of cells running around both sides of the central partition which does not
form a single line, but it does constitute the longest sequence of shortest available
routes in the complex. It is by partitioning this line close to its centre that we will
maximise depth gain, that means placing the bar at right angles to the partitioning
line at its base in one of the two possible locations. The next bar must then take
account of which has been selected, and in fact extend that bar. The next two must
repeat the same move on the other side, thus taking us up the ninth bar in the
figure. The same principle can then be applied to the next sequence of bars, and
in fact all we must do to complete the process is to continue applying the same
principle in new situations as they arise from the barring process. By bar 24, the
pattern is as shown in the final form in figure 8.11d.

Looking at the final form, we first confirm that once a 25th bar is added no
further bar could be added without splitting the aggregate into two. We also note
that the configuration of space created by the barring is, excepting the small ring
that would be eliminated by bar 25, a single ‘unilinear’ sequence of cells, that is, the
form with the maximum possible depth from all points to all others. By maximising
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Figure 8.12
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depth gain at every stage of the process we arrive, perhaps not surprisingly, at a
form which globally maximises depth gain. We also note, that by applying simple
rules to the barring process, we have converted a process which theoretically could
lead to an astronomical number of possible global forms, to one which leads almost
deterministically to a specific form.

Figure 8.12a-d now illustrates the contrary process in which each move
minimises depth gain, again with numbering in the order of the moves. Bar 1 must
be at the edge of a line of cells, and to minimise the loss of non-contiguous bar
locations it should also be on one of the outermost lines of cells. Once we have
bar 1, the following moves to minimise depth gain must continue to bar the already
barred ling, since this line is now shorter than any other line, and to do so each
time as close to the edge of the remaining cell sequence as possible. As before,
then, bars 1 - 5 are forced, and lead to a very specific overall pattern. A similar
procedure is then forced on other edge lines, obviously omitting bars which would
form a right angle with existing bars, since this would split the system into two. Bars
1-16 therefore continue this process until the possibilities are exhausted.

The next move must be non-contiguous and must be as near the edge
as possible. Several identical possibilities exist, so we select 17. 18 and 19 must
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continue to bar the same ling, leaving only one of two possible identical further non-
contiguous moves. We select 20. Now no more non-contiguous moves are available,
SO we must select contiguous moves with the least depth gain. The best turns out
to be that rebarring the already barred line on which 20 lies has the least depth
gain, in spite of the fact that it creates a three-sided enclosure. But the next move
cannot create the same pattern to the right, since this will also create a double line
block as well as a three-sided enclosure. Barring the open line at 22 has less depth
gain than barring the adjacent line to the right, at which point 23 becomes optimal.
The final bar must then be on one of five still open lines, the four comprising the
‘ring’, and the one passing through the centre. Cutting the ring creates much more
depth gain than cutting the centre line, because it creates a block in the system

that is four cells deep from the boundary. Of the possible locations on the centre
line, the central location has less depth gain because the location one to the right
creates a two-deep enclosure, which creates more extra depth than the difference
between the centre and one-from-centre location.

The depth minimising process has thus given rise to a form which is as
striking as the depth maximising process: a ring of open cells accessing outer
and inner groups of one-deep cells. We have only to convert the doors in the ring
to full width permeabilities to create a fundamental building form: the ring corridor
accessing separate ‘rooms’ on either side. This has happened because the depth
gain minimising strategy tends to two kinds of linearity: a linearity in dividing lines
of cells up into separate single cells; and a linearity in creating the open cell
sequences that provide access to these cells. Aficionados of Ockam'’s razor will
note that both these contrary effects follow from the single rule that bars should
always be placed so as to bar the shortest line of cells available as near the edge
as possible. This means that once a line has been divided, then it minimises depth
gain to divide it again, since, other things being equal, the remainder of an already
barred line will always be shorter than an unbarred line. Figures 8.13a and b show
typical forms from the two processes, together with depth values for each cell. In
fact, the two forms shown in Figures 8.1b and c. The total depth for the near depth
maximising process is 156320 while that for the depth minimising process is little
more than a third as much at 5824. These differences are all the more remarkable in
view of the fact that each form has exactly the same number of partitions. The only
difference is the way the partitions are arranged.

But in spite of their differences, each of the forms generated seems in its
way quite fundamental. The depth maximising form is close to being a unilinear
sequence, that is the form with the maximum possible depth from all cells. The
depth minimising form approximates if not a bush, then at least a bush like
arrangement built on a ring. We have arrived at these forms by constraining the
combinatorial process down certain pathways by some quite simple rules. These
have created well defined outcomes through morphological processes which are
objective in the sense that although the selection and implementation of rules
is a human decision, the local to global morphological effects of these rules,
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Figure 8.13
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whether for the individual move in the process or the accumulative result, is quite
independent of human decision. The eventual global pattern of space ‘emerges’
from the localised step-by-step process. At the same time, processes whose rules
are similar ‘converge’ on particular global types which may vary in detail but at least
some of whose most general properties will be invariant — the tendency to form
long sequences with few branches, the tendency to generate one-deep dead end
spaces, the tendency to form smaller or larger rings and so on.

This combination of emergence and convergence is immensely suggestive.
It appears to offer a natural solution to the apparent paradox we noted at the start
of this chapter: that in spite of the vastness of the combinatorial field, intuition
suggested relatively few ways of designing space. We may now reformulate this
paradox as a tentative conclusion: consistently applied and simple rules arising
from what is and is not an intelligible and functionally useful spatial move create
well-defined pathways through the combinatorial field which converge on certain
well-defined global spatial types. These laws of ‘emergence-convergence' seem
to be the source of structure in the field of architectural possibility. What then are
these laws about? | propose they are about what | called ‘generic function’, that is
properties of spatial arrangements which all, or at least most, ‘well-formed’ buildings
and built environments have in common, because they arise not from specific
functional requirement, that is, specific forms of occupation and specific patterns of
movement but from what makes it possible for a complex to support any complex
of occupation or any pattern of movement.

The theory of generic function: intelligibility and functionality
The first aspect of generic function reflects the property of ‘intelligibility’ which
Steadman suggests might be one of the critical factors restricting architectural
possibility. In Chapter 4 we suggested that the intelligibility of a form can be
measured by analysing the relation between how a complex can be seen from its
parts and what it is like in an overall pattern, that is, as a distribution of integration.
This was expressed by a scattergram showing the degree of correlation between
the connectivity of a line, which is a local property of the line and can be seen from
the line, and integration, which is a global property relating the line to the system as
a whole and which cannot therefore be seen from the line. How might this concept
relate to the construction of spatial patterns by physical moves? Visibility is in fact
interesting since it behaves in a similar way to depth under partitioning. For linear
cell sequences the effect of bars on visibility exactly mirrors depth gain, though in
a reverse direction: visibility lost from a bar is exactly half the depth gain from the
same bar, and as the bar moves from edge to centre the total visibility along the line
decreases, while at the same time the visibility value of cells along that line become
more homogeneous, eventually becoming the same with a central bar.

In our two complexes then, let us define visibility very simply as the number
of cells that can be seen from the centre of each cell. These visibility values are set
out for our two depth maximising and minimising complexes in figures 8.13c and d.

The laws of the field Space is the machine | Bill Hillier Space Syntax



246

Is architecture an ars combinatoria?

Figure 8.14
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These visibility values and their mean index the visual connectivity of the complex.
We may also express these by drawing an axial map of the fewest lines that pass
through all the cells. We can see how many cells each line passes through, and
how this differs from one complex to another. We can if we wish express this in a
summary way by working out the ratio of the means depths for each cell and the
mean visibility of each cell. For the depth minimising form, the mean depth from
cells is 5.3, and the mean visibility is 3.9. We might call this a .74 visibility to depth
ratio. In the depth maximising form, the mean depth is 11.9 while the mean visibility
is 2.8, a visibility ratio of .24, about a third that of the depth minimising form. This
seems to agree quite well with intuition.

This shows how the visibility and depth properties of the complex relate to
each other. However, we may learn more by correlating the permeable depth figures
for cells with their visibility figures and expressing the relation in a scattergram.
The better the values correlate, the more we can say that what you can see from
the constituent cells of the system is a good guide to the global pattern of depth
in the complex which cannot be seen from a cell, but which must be learnt. The
correlation thus expresses the intelligibility of the complex. Figures 8.14a and b are
the scatters and correlation coefficients for our two cases, showing that the depth
minimising form is far more intelligible than the depth maximising form.

This formally confirms our intuition that the depth maximising form is hard

to understand, in spite of being a single sequence, because the sequence is
coiled up and the information available from its constituent cells is too poor and
undifferentiated to give much guidance about the structure of the complex as a
whole from its parts. The opposite is the case in the depth minimising complex.
On reflection, we can see that this will always tend to be the case with depth
maximising processes since the partitioning moves that maximise depth are also
those which also maximally restrict visibility.

There are therefore, as Steadman suggests, fundamental reasons to do with
the nature of human cognition and the nature of spatial complexes which will bias
the selection of spatial forms away from depth maximising processes and in the
direction of depth minimising processes. Through this objective — in the sense that
we have measured as a property of objects rather than as a property of minds -
property of intelligibility then we can see one aspect of generic function structuring
the pathways from combinatorial possibility to the architecturally real.

There are, however, further reasons why depth minimising forms will
be preferred to depth maximising forms which have to do with functionality.
Functionality we define as the ability of a complex to accommodate functions in
general, and therefore potentially a range of different functions, rather than any
specific function. Intuitively, deep tree-like forms such as the depth maximising form
seem functionally inflexible and unsuited to most types of functional pattern while
the depth minimising form seems to be flexible and suited to a rather large number
of possible functions. Can this be formalised?
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Figure 8.15 (above)

Locally convex movement; when
small movements intersect and
form a local convex region.

Figure 8.15 (below)

Globally linear movement;
when large scale movement
forms strings or rings of lines.

It is useful to begin by considering in as generic a way as possible the types of
human behaviour that occur in buildings. We may do this best by considering

not the purpose or meaning of an activity but simply its physical and spatial
manifestation, that is, what can actually be observed about human activity by, say,
an extra-terrestrial who had no idea what was going on and could only record
observations. Generically, such an observer would conclude, two kinds of thing
happen in space: occupation and movement. Occupation means the use of space
for activities which are at least partly and often largely static, such as conversing,
meeting, reading, eating or sleeping, or at most involve movement which, when
traced over a period, remains localised within the occupied space, such as cooking
or working at a laboratory bench, as shown in figure 8.15.

Movement we can define not as the small local movements that may be
associated with some forms of occupation, and therefore to be seen as aspects of
occupation, but movement between spaces of occupation, or movement in and out
of a complex of such spaces. Movement is primarily about the relations between
spaces rather than the spaces themselves, in contrast to occupation which makes
use of the spaces themselves. We can see this as a scale difference. Occupation
uses the local properties of specific spaces, movement the more global properties
of the pattern of spaces.

There is also a difference between occupation and movement in the spatial
form each takes. Because spatial occupation is static, or involves only localised
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movement, the requirement that it places on space is broadly speaking convex,
even when this involves localised movement within the space. In particular, any
activity that involves the interaction or co-presence of several people is by definition
likely to be convex, since it is only in a convex space that each person can be
aware of all the others. Movement, on the other hand, is essentially linear, and

the requirement that it places on space is consequently linear, at least when seen
locally in its relation to occupation. There must be clear and relatively unimpeded
lines through spaces if movement is to be intelligible and efficient.

Occupation and movement then make requirements of space that are
fundamentally different from each other in that one is convex and the other linear.
Because this is so there is an extra difficulty in combining occupation and movement
in the same space. There will always, of course, be practical or cultural reasons why
different forms of occupation cannot be put in the same space - interference, scaling
of spaces, privacy needs, and so on — in spite of the fact that each is convex and
in principle could be spatially juxtaposed to others. But to assemble movement and
forms of occupation in the same space is in principle more difficult because, over
and above functional interference, occupation and movement have fundamentally

Figure 8.16

different spatial shapes. The interference effect from occupation to occupation and
from movement to movement will be of a different kind to that from occupation to
movement because the spatial requirements are more difficult to reconcile.

Because this is so, it is common to find that the relation between movement
and occupation in spatial complexes is often one of adjacency rather than overlap,
whether this occurs in spaces which are fully open (as for example when we have
both lines of movement and static occupation in a public square), or fully closed, as
when we have rooms adjacent to corridors, or one is open and the other closed,
as when houses align streets. In each case, the linearity required for movement is
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achieved by designing movement to occur in spaces which pass immediately by
rather than through occupation spaces.

Now let us consider the types of space that are available to meet the
requirements of occupation and movement. First we must consider the most basic
topological properties as embodied in the graph of a complex, since even at this level
topologically different types of space have quite different potentials for occupation
and movement. Let us first consider, a familiar graph, as shown in 8.16a, b and c.

In this graph, as in others, the spaces that make up the graph can be
divided into four topological types. First, there are spaces with a single link. These
are by definition dead-end spaces through which no movement is possible to
other spaces. Such spaces have movement only to and from themselves, and are
therefore in their topological nature occupation-only spaces. Examples are marked
‘a’in figure 8.16a. The link from one-connected spaces to the rest of the graph is
necessarily a cut link, meaning that its elimination must split the graph into two, in
this case the space whose link has been cut and the rest of the graph. Because the
cut link only serves a single space, the effect of cutting makes little difference to the
remainder of the complex beyond minor reductions in the depth of the rest of the
complex following the elimination of a space.

Second, there are spaces with more than one link but which form part
of a connected sub-complex in which the number of links is one less than the
number of spaces, that is, a complex which has the topological form of a tree. Such
spaces cannot in themselves be dead end spaces, but must be on the way to (and
back from) at least one dead end space. All links to spaces in such complexes,
regardless of the number of links to each space, are also ‘cut links’ in that the
elimination of any one link has the effect of splitting one or more spaces from the
rest of the complex. Such spaces are marked ‘b’ in figure 8.16a. A consequence
of the definition is that there is in any such sub-complex (or complex) exactly one
route from each space to every other space, however large the sub-complex and
however it is defined. This implies that movement through each constituent space
will only be to or from a specific space or series of spaces. This in turn implies that
movement from origins to destinations which necessarily pass through a b-type
space must also return to the origin through the same space.

Third, there are spaces with more than one link which form part of a
connected sub-complex which contains neither type a nor type b spaces, and in
which there are exactly the same number of links as spaces. Such spaces are
marked c in figure 8.16a. The definition means that c-type spaces must lie on a
single ring (though not all spaces on the ring will be c-type) so that cutting a link to
a c-type space will automatically reduce the ring to one or more trees. Movement
from a c-type space through a neighbour need not return through the same
neighbour but must return through exactly one other neighbour.

Finally there are spaces with more than two links and which form part of
complexes which contain neither a- nor b-type spaces, and which therefore must
contain at least two rings which have at least one space in common. Such spaces

The laws of the field Space is the machine | Bill Hillier Space Syntax



251

Is architecture an ars combinatoria?

Figure 8.17
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must lie on more than one ring, and are labelled ‘d" in figure 8.16a. Movement from
d-type spaces through a neighbour has the choice of returning by way of more than
one other neighbour.

We may also define subcomplexes of the a-, b-, c- or d-type as the space of
that type plus all the spaces by reference to which it is defined as a space of that
type, even though some of those spaces may belong also to other subcomplexes.
(In other words, a subcomplex of a given type is a complex containing at least one
space of that type.) Looking at numbered spaces in figure 8.16b, we can then say
that spaces 5 and 11 are a-type spaces, and that the sub-complex formed by spaces
2 and 5 and that formed by 9 and 11 can be thought of as a-type subcomplexes.
Space 9 is a b-type space, and that the subcomplex formed by spaces 6, 9 and 11
can be seen as a b-type sub-complex. Spaces 2, 6, 7, 8 and 10 are c-type spaces
and each may be seen as forming part of a local ring, or c-type complex: thus 2 and
6 are part of the c-type subcomplex formed by spaces 1, 2, 6 and 3, and 7, 8 and
10 are part of the c-type complex formed by spaces 3, 7, 10, 8 and 4. Space 3 and
4 are d-type spaces and are part of the d-type subcomplex formed by spaces 1, 2,
3,4, 6,7 8and 10. Spaces are, in effect, unambiguously defined by their place in a
complex, but this does not mean that spaces that contribute to that definition do not
form part of other complexes. For example, an a-space may be part of a b-complex,
or a c-space may be part of a d-complex without in either case compromising its
unique identity as an a- or c- type space.

There are simple and fundamental relationships between these elementary
topologies and the depth minimising and maximising processes. A depth minimising
process will in its nature tend first to leave long lines of spaces unimpeded and to
preserve their connection to other long lines, and second to coil contiguous bars
up into small, one-deep ‘rooms’. This is illustrated in figure 8.17a where the first
eight bars cut the shortest lines, to create rooms at either end and potential rooms
in the centre. The dotted bars marked ‘a’ and ‘b’ represent two possible choices
at this point, and the figure on the right side shows the total depth in the system
after each. The analysis shows that the two one-deep rooms add far less depth
than one two-deep complex, in effect because the two-deep complex is created
by five contiguous bars, whereas the one-deep spaces are each created by three
contiguous bars. The depth minimising process thus tends to create a-type spaces
linked by global c- and d-type complexes, as was the case in the 6 x 6 example in
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figure 8.13b. In contrast, the depth maximising process, as shown in figure 8.17b
for example, will by contiguously barring the longest available lines, create b-type
spaces and therefore sequences rather than a-type spaces, and localise ¢c- and
d-complexes at the earliest possible stage of generation, and with a configuration
in which there are few a-type spaces, and these at the end of long sequences, with
any rings in the system highly localised.

In other words depth minimising processes will tend locally to a-type
complexes and globally to d-type complexes (in figure 8.13b it is only the final
24th bar that reduces a strong global d-complex to a global c-complex), while
depth maximising processes will tend globally to b-type complexes and locally to
small residual c-type complexes. This is instructive because it tells us how these
elementary configurations are related to the product of the functionally critical
property of integration in spatial complexes. Essentially, a- and d-type spaces
create integration, while b- and c-type spaces create segregation. In other words,
segregation in a complex is created almost entirely by the sequencing of spaces.
Since this is not obvious, it is worth illustrating. In figure 8.18 for example, in the
left column, we increase the size of the ring from 8 to 12 spaces and the i-value
increases (i.e. becomes less integrated) from .4285 for the 8-ring to .4545 for the

mean: .3048 m  ean:.2200

mean: .2848

mean: .2011
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12-ring. In the second column, we add a single a-type space to each c-type space.
Both complexes become on average more integrated, but the 12-ring complex
below becomes relatively more integrated at .2848 than the 8-ring complex above at
.3048. In fact, the ring spaces in the 12-ring complex are slightly less integrated at
.2410 than those of the 8-ring complex at .2381, but the a-type space of the 12-ring
complex are markedly more integrated at .3281 than those of the 8-ring complex

at .3714. In the right column, we link two a-spaces to each c-space and the pattern
becomes even more marked. The 12-ring complex is now more integrated at .2011
than the 8-ring complex at .2200, with ring spaces at .1630 compared to .1621, but
a-spaces at .2201 compared to .2490.

We now have a more or less complete account of the relation between
generative processes, the creation of different types of local and global space
complexes, and the construction of patterns of integration. We can now formulate
the question at the centre of our argument: what are the implications of these
spatial variations for occupation and movement, that is, for the generic functioning
of spatial complexes? In exploring this, we should bear in mind one of the major
findings of the research reported in Chapters 5 to 8: that the more movement in a
complex is from all parts to all other parts, then the more the pattern of movement
in a complex will tend to follow the pattern of integration.

First we must note that each of the types of space we have identified, and
the type of complex it characterises, has generically different implications for space
occupation and movement. As we have already indicated, a-type spaces do not have
through movement at all and therefore do raise the issue of relating occupation to
movement (other than movement to and from the space itself). b-type spaces raise
the possibility of through movement but also control it strongly, both because each
route through a b-type space is unique and also because return movement must pass
through the same space. c-type spaces also raise the possibility of through movement
while also constraining it to specific sequences of spaces, though without the same
requirement for the return journey. d-type space permits movement, but with much
less built-in control because there is always choice of routes in both directions.

It is clear then that b-type and to a lesser extent c-type spaces have a much
more determinative relation to movement than either a-type or d-type spaces. While
the a-type does not allow for through movement, and the d-type allows choice of
movement, the b-type and the c-type permit but at the same time constrain it by
requiring it to pass through specific sequences of spaces. The b-type is the most
constraining. For any trip from an origin to a destination, every b-space offers
exactly one way in and one way out of each space and every trip in a b-complex
must pass both ways through exactly the same sequence of spaces. A similar,
though weaker, effect is found for c-spaces and c-complexes, because although at
the level of the ring as a whole there will be a choice of one direction or another,
trips once begun must use a single sequence of spaces, and the trip therefore
resembles a b-trip, though without the requirement that the return journey repeat the
same sequence in reverse. This effect arises from the simple fact that b- and c-type
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spaces are from the point of view of any trip that passes through them, effectively
two-connected, and two is the smallest number that allows entry to a space in one
direction and egress in another. It is this essential two-connectedness from the point
of view of trips, that gives b and c-spaces their distinctive characteristic of both
permitting and constraining movement.

Now this means that b- and c-type spaces raise issues for the relation
between occupation and movement which are not raised either by one-connected
or more than two-connected space, in that they require the resolution of the
relation between occupation and through movement within each convex space.
This has a powerful effect on the usability of spaces and space complexes of
this kind. In general, it can only occur where the sequencing of spaces reflects a
parallel functional sequencing of occupation zones, and movement is, as it were,
internalised into the functional complex and made part of its operation.

For example many types of religious building use exactly this spatial property
to create a sequence of spaces from the least to the most sacred, each space having
different occupational characteristics. More commonly, we find the phenomenon
of the ante-room, for example where a senior person in an organisation places a
subordinate in a space which controls access to the office. In domestic space, such
interdependencies are quite common. Indeed, the domestic dwelling may often be
characterised as a pattern of such interdependencies. Figure 8.16, for example, has
a maximally simple b-complex (spaces 6, 9 and 11) associated with male working
activity and a near maximally simple c-complex (spaces 3, 7, 10, 8 and 4) associated
with female working activity, as well as a maximally simple a-complex (spaces 2 and
5) associated with formal reception and a dominant d-type space (space 3 — the salle
commune) in which all everyday living functions, including informal reception, are
concentrated and which holds the whole complex together. It is notable that if this
space (space 3) is removed from the complex, as in figure 8.16¢, the whole complex
is reduced to a single sequence with a single one-deep branch.®

In general we can say that the sequencing of spaces normally occurs when
(and perhaps only when) there are culturally or practically sanctioned functional
interdependencies between occupation zones which require movement to be an
essential aspect of these interdependencies and therefore to be internalised into
a local functional complex of spaces.’® Such interdependencies are comparatively
rare and, because they are so, where they do occur they tend to be highly localised.
There are simple combinatorial reasons for this. If interdependency requiring
internalisation of movement into a functional complex is unusual for pairs of
occupation types, it is even more unusual for triples, even more for quadruples, and
so on. This is why it tends to remain localised.

It follows that whereas in small buildings, such functionally interdependent
complexes can form a significant proportion of the complex, or even the whole
complex, as buildings grow large and acquire more and more occupation spaces,
those that have the necessary interdependencies that require spatial sequencing will
become a diminishing proportion of the whole. As buildings grow therefore more
and more of the movement will not be of the kind which is internal to the functioning
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of a local subcomplex but will occur between subcomplexes which are functionally
much more independent of each other.

This means that movement will be less ‘programmed’, that is, a necessary
aspect of interdependent functions, and more contingent, or ‘unprogrammed".™
It follows that the pattern of movement will follow from two things: first from the
way in which the various occupation spaces are disposed in the spatial complex,
coupled to the degree to which each acts as an origin and a destination for
movement between occupation spaces; second, from how this disposition relates
to the spatial configuration of the complex itself. The more movement occurs more
or less randomly from all locations (or even all parts of the complex) to all others,
then the more it will approximate the conditions that give rise to ‘natural movement’,
that is movement through spaces generated by the configuration of space itself, and
the more movement will then follow the pattern of integration of the building. The
more this occurs, the more movement will be functionally neutralised, that is, it will
not be an intrinsic aspect of local functional complexes determined by the functional
programme of the building but as a global emergent phenomenon generated by the
structure of space in the building and the disposition of occupation spaces within it.

Neutralised movement will then tend to follow the configurational topologies
that generate the pattern of integration in a building. a-space will have no movement
other than that starting and finishing in them; b-space will have movement only to the
spaces to which they control both access and egress; c-spaces will have movement
to spaces to which they control either access or egress; while d-spaces will be
natural attractors of movement. It follows that just as a-spaces are the most suited for
occupation because they are least suited for movement, so d-spaces are the least
suited for occupation, because they are the most suited to movement, especially
where this movement is from all locations to all other locations in the complex.

It follows that a growing spatial complex will need a decreasing proportion
of b- and c-complexes since these will only be needed for local functionally inter-
dependent groups of occupation spaces, and a growing proportion of a-type and d-type
complexes. In such complexes there will be a natural specialisation of spaces into
a-complexes for occupation and d-complexes for movement, and therefore an equally
natural tendency towards the adjacency relation for occupation and movement.

As we have seen, it is exactly such complexes that are generated by depth
minimising processes. Such complexes also have other advantages. First, because
the mix of a-type and d-type complexes is in its nature the most integrated, then
journeys from all spaces to all others will be on average topologically (and in fact
metrically) shorter than for any other type of complex. Second, such complexes
maximise the number of a-spaces for occupation while minimising the number of
spaces in the d-complex for movement, thus making the relation of occupation
and movement as effort-efficient as possible. Third, the more this is the case, the
more movement from specific origins to specific destinations in the complex will
overlap and create a global pattern of co-presence and co-awareness of those who
are not brought together in the local functional subcomplexes of the building. In

The laws of the field Space is the machine | Bill Hillier Space Syntax



256

Is architecture an ars combinatoria?

other words, the movement pattern brings together in space what the occupational
requirement of the complex divides. This reflects the basic fact that whereas the
overlap of occupation type in the same space is likely to cause interference from one
to the other, the overlap of movement in situations where movement is functionally
neutralised creates an emergent form of spatial use — co-presence through movement
— which is essentially all of the same type. Overlap is therefore not likely to be read as
interference. On the contrary, it is likely to be read as a benefit.

It is then in the nature of things that spatial complexes of this type will
tend to become dominant as buildings grow in scale and occupational complexity.
This type of configuration arises from generic function, that is, from the fact of
occupation and the fact of movement, prior to any consideration of the specific
functions to be accommodated in the building. We only need to add the larger open
spaces and longer linear spaces in the d-complex in accordance with the principles
we have established to optimise the relation between occupation and movement
in the complexes.

So, is architecture an ars combinatoria?
We have now answered the question asked at the beginning of the chapter,
and embodied in the two prefatory quotes. No theory of architecture as an ars
combinatoria of elements and relations is useful because, as with language, it is
how combinatorial possibility is restricted that gives rise both to the ‘structure of
the language’ and to the ‘elements’ of which the language is composed. The vast
majority of combinatorial possibilities are as irrelevant to that language as random
sequences of words are to natural language. The structure of the language, which
eliminates most possibilities, arises not from basic rules for combining basic
elements, but from local to global laws from physical moves to spatial configuration,
which give rise at one level to the local stabilities we call elements and at another to
the higher order patterns that characterise the general spatial forms of buildings.
The effects of understanding how restrictions on combinatorial possibility
create the ‘language of space’ are two. First, we see that there are not in any useful
sense basic elements. Elements arise from local spatial strategies that realise — and
must then be taken as intending to realise — particular local to global spatial ends.
All are describable as spatial phenomena emergent from the consistent application
of rules governing either the completion or removal of a single type of fundamental
spatio-physical element: the permeable partition. It is the record of this consistent
application that we see when we name a local configuration as a certain kind of
element. If we randomly partition a complex, as in the four examples in figure 8.19,
we do not find such consistencies, and we are not therefore inclined to identify
elements. We should properly see ‘elements’ as ‘genotypes’, that is, systems of
informational abstractions governing objects whose phenotypes are endlessly
varied. It is only in this way that we can reconcile the idea of a well-formed ‘element’
with the fact that such elements arise from and are given by configurational
relations, not only those which generate their intrinsic form, but also those which
define their embedding in the system as a whole. In one sense we might say
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Figure 8.19

I

mgSyna
11

efizist

—

T

E

i

]
]
——
] |+

L
i

il

that we have reduced the apparent fundamental elements of spatial complexes

to something more elementary: a small family of local physical moves which by
following different rules produce spatial effects in the complex. But in a more
important sense, we have dissolved the element into two sets of configurational
laws: the laws that generate the element itself, and those that generate the impact
of the element on the complex as a whole.

Second, we see that it is not useful to think of global patterns as arising
simply from relations among elements. In a spatial configuration, every local move
has its own configurational effect, and it is the natural laws that govern these local
to global effects that govern global configuration. It follows that it is knowledge of
these laws that we require for a theory of space, not knowledge of combinatorial
possibility. It is these laws that give rise to both the local configurational types
we are tempted to call elements and to the global configurational patterns that
commonly characterise buildings as a whole. We can thus solve the apparent
paradox of vast combinatorial possibility and a few basic pattern types. It is the
natural local to global laws restricting possibility that lead space to converge on the
pattern types that we find.

The precise form of these laws governing the relation between possible

The laws of the field Space is the machine | Bill Hillier Space Syntax



258

Is architecture an ars combinatoria?

spatial configuration and generic function lies in the fact that individual, localised
design moves — say making a partition, or eliminating a doorway - have global
configurational effects, that is, effects on the overall pattern of space. These global
pattern effects of local moves are systematic, so that different types of move, carried
out consistently, will give rise to very different configurational effects. These local to
global laws are independent of human volition, and as such must be regarded as
more akin to natural laws than contingent matters of human existence. This does
not imply that the relationship of human beings to space is governed by natural
laws, but it does mean that the passage from the possible to the actual passes
through — and has historically passed through - natural laws which mediate the
relationship of human beings to space. The built forms that actually exist, and have
existed, are not, as they are often taken to be, simply subsets of the possible, but
variable expressions of the laws that govern the transition from the possible to

the real. These laws, and their relation to generic function, are therefore the true
constraints on spatial possibility in architecture and urban design, and a theory of
space must be an account of these laws.

Does this mean we should abandon combinatorics altogether? We should
not. Combinatoric possibility is the framework within which architectural actuality
exists, and the proper form of a theory is one that describes how possibility
becomes actuality. We are now in a position to suggest the general framework for
such a theory. The huge number of possible spatial arrangements, we suggest,
pass through a series of three filters before they become real buildings. The filters
operate at different levels, but all have to do with the human purposes for which we
make buildings; that is, these filters are functional filters of possible forms.

The first filter is the most general: that of generic function, as we have described
above. This governs the properties which all spatial arrangements must have in
order to be usable and intelligible to human beings at all, that is, in order for human
beings to be able to occupy space, to move about between spaces and to find
buildings intelligible. The second filter is the filter of cultural intent. This refers to
the way in which buildings tend to form culturally defined types so that buildings
which perform the same culturally defined function in a specific time and space
tend to have at least some common spatial properties. We may call this filter that
of the cultural genotype. The third filter is the level of the specific building, where
those aspects which are not specified by the cultural genotype can vary either in a
structured or random way, giving rise to individual differences in buildings. These
three functional filters are not independent of each other, but work in succession.
For example, all level-two cultural genotypes work within the limits set by the
generic function filter of level-one. Similarly, level-three filters work within the
constraints set at level-two.

There is, however, a further reason why we should not abandon
combinatorics. Although we have shown in this chapter that the combinatorial study
of formal and spatial possibility in architecture cannot in itself lead to the theory
of architectural possibility, this does not end the matter. Although the theoretical
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space of buildings is only a part of the theoretical space of spatial combinatorics, it
nevertheless is a part of that field, and as such it must obeys its laws. If this is the
case, then we find that having eliminated combinatorics as a theory of architecture,
we must re-admit it as meta-theory.

Let us argue from a precise example. In Chapter 2, we discussed a thought
experiment called the ‘Ehrenfest game’ as a model for the concept of entropy. In
this experiment, 100 numbered balls placed in one jar eventually get more or less
evenly distributed between two jars if we randomly select a number and transfer the
corresponding ball from whichever jar it is in to the other. This happens because
the half and half state is the most probable state because there are far more
microstates, that is, actual distributions of the numbered balls, corresponding to
the half and half macrostate (that is the actual number of balls in each) than to
macrostates in which the balls are unevenly distributed. The shifting probabilities of
this process give an insight into the formal nature of ‘entropy’.

Now the point of the ‘Ehrenfest game’ is that it is a useful analogue for the
physical notion of ‘entropy’, as found for example in mixing gases. It is relevant
to our argument because we can use the Ehrenfest model to explore a random
partitioning process, and in doing so learn important lessons about partitioning in
general. All we need do is set up a process for randomly partitioning our spatial
complex by numbering our 60 partitions in the 6x6 complex and setting up the
random selector to select a number between 1 and 60. We then spin the pointer
to select numbers in succession, and each time a number is selected go to the
partition with that number and change its state; that is, open a doorway in a
partition without one, and close it off if it has one. What happens? Intuition says that
the process will eventually settle down to a state in which about half the partitions
have doorways and half do not, and that this is therefore the most probable state.
We already know that this is the state where there are the maximum possible
number of different arrangements.

We may show this, and understand its relevance, by thinking through
carefully what will happen in our random process. The first time a number is
selected, the probability of opening a doorway rather than closing one is 60/60, or
1, meaning certainty. The second time, there is a 1/60 chance of closing the same
door we have just opened (a .0167 probability) and a 59/60 chance of opening
another (a .9833 probability). The third time, there is a 2/58 chance of closing one
of the doors we have just opened (or a .0345 probability), and a 58/60 chance of
opening another (a .9667 probability). Evidently as we progress, the chances of
closing a door rather than opening another begin to approach each other until when
we have 30 doorways open and 30 partitions closed, the chances are exactly equal.
Opening and closing doors are therefore ‘equiprobable’.

In other words, we have the same type of combinatorics for a partitioning
process as we do for an Ehrenfest game, and therefore for the concept of entropy.
This conclusion has clear architectural implications. For example, it explains that,
as we have already noted, there are far more partitioning states for about half the
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number of possible partitions than there are for smaller or larger numbers. There

is then a greater range of states for partitioning close to the maximum for a single
complex (as in the depth maximising and depth minimising examples) and it is also
in this region that small changes to a partitioning have the maximum effect on the
distribution of integration, as for example moving a single partition to cut a large
ring. There are a whole family of such and similar questions which arise from the
basic combinatorics of space, even though buildings occupy only a small part of the
combinatorial range.

The laws of spatial combinatorics are not therefore the spatial theory of
architecture but they do govern it and constitute the meta-structure within which
the theoretical space of real architectural possibility exists. Spatial combinatorics
is therefore the meta-theory of architectural space, not its theory. The relationship
is exactly analogous to that between the mathematics of ‘information theory’
and the science of linguistics. The mathematical theory of communication is not
itself the theory of language, but it is the meta-theory for the theory of language,
because it is the framework of general laws within which linguistic laws come into
existence. As with language, mathematical laws of combinatorics are everywhere
present in architectural possibility because they are the framework for that system
of possibility. They need therefore to be understood as a pervasive, containing
framework for the theory of architectural space.

In the next chapter we will see that there is a much more pervasive sense
in which combinatorics is the meta-theory of architectural possibility, that is, when
we come to study not the discrete sets of possibilities which we have considered
so far, but when we look at aggregative processes of the kinds that prevail in urban
systems of all kinds, and in building complexes as they become large. Here we will
see that, as discussed briefly in Chapter 8, combinatorial probability actually plays a
constructive role in architectural morphogenesis.
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These proportions are estimated from the results yielded by the ‘second
normalisation’ to large numbers of cases. It must be stressed that they are at this
stage only tentative approximations. The general point, however, seems secure.
An exactly analogous conclusion about the nature of ‘elements’ in language

is reached by de Saussure in Course in General Linguistics, McGraw Hill, 1966
(originally in French, 1915). For example: ‘Language does not offer itself as a set
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of pre-delimited signs to be studied according to their meaning and arrangement’,
p.104; ‘We are tempted to think so if we start from the notion that the units to

be isolated are words...the concrete unit must be sought not in the word, but
elsewhere’, p.105; and ‘Language, in a manner of speaking, is a type of algebra
consisting solely of complex terms...language is a form not a substance...all our
incorrect ways of naming things that pertain to language stem from the involuntary
supposition that the linguistic phenomenon must have substance’, p.122.

In other words, each kind of occupation is characterised by a distinctive local
configuration, dependent for their integration into a single complex on the spatio-
functionally central salle commune. It is the fact of being an assemblage of
different local sub-complexes into a single configuration that makes the dwelling
distinctive as a building type. The dwelling is not, as it is often taken to be, the
simplest building. On the contrary, seen as an intricate pattern of functional
interdependencies mapped into space, it may well be the most complex.

In buildings where the organisation of a specific pattern of movement is a dominant
functional requirement we can expect space to be dominated by sequencing. For
example, galleries and exhibition complexes, which are designed explicitly to move
people through the complex so that all spaces can be traversed without too much
repetition, normally have a high proportion of c-type sequenced spaces, giving
their justified graphs the distinctive form of a number of deep, intersecting rings.
This is not, however, a clear case. If we examine the functional microstructure

of gallery spaces we find that the lines of global movement pass through the
sequenced space in such a way as to leave the viewing zones free for only local
convex movement. Locally at least, the relation of convex and linear zones is one of
adjacency rather than true interpenetration.

Or, as discussed in Chapter 7, will follow long or short models.
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